

OpenStack Cloud
Computing Cookbook
Second Edition

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

Kevin Jackson

Cody Bunch

BIRMINGHAM - MUMBAI

OpenStack Cloud Computing Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Second Edition: October 2013

Production Reference: 2111013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-758-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Authors
Kevin Jackson

Cody Bunch

Reviewers
Mike Dugan

Lauren Malhoit

Paul Richards

Trevor Roberts Jr

Maish Saidel-Keesing

Sean Winn

Eric Wright

Acquisition Editors
Kartikey Pandey

Rebecca Youe

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Gauri Dasgupta

Dipika Gaonkar

Monica John

Shiny Poojary

Project Coordinators
Arshad Sopariwala

Priyanka Goel

Proofreader
Stephen Swaney

Indexers
Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Graphics
Yuvraj Mannari

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Authors

Kevin Jackson is married with three children. He is an experienced IT professional
working with small businesses to online enterprises. He has extensive experience of various
flavors of Linux and Unix. He works from home in Southport, UK, specializing in OpenStack
for Rackspace covering the International market for the Big Cloud Solutions team. He can
be found on twitter @itarchitectkev. He also authored the first edition of OpenStack
Cloud Computing Cookbook, Packt Publishing.

I'd like to dedicate this book to my mum and dad who have had to deal
with a tough six months, and thank my wife, Charlene, for her continued
support through this second edition—it has been a bigger piece of work than
expected! I extend a special thank you as well to my co-author, Cody Bunch,
for helping the continued success of this book, and the immense work the
tech editors have done. I also want to thank some great people in Rackspace
and the OpenStack community that always help keep things moving in the
right direction: Florian Otel, Atul Jha, Niki Acosta, Scott Sanchez, Jim Curry,
as well as the folk at the OpenStack Foundation—and a whole host of other
people I've had the pleasure to cross paths with—especially those that have
helped me with any issues such as Endre Karlson.

Cody Bunch is a Private Cloud Architect with Rackspace Hosting. He has been in the IT
industry for the last 15 years, during which time he's worked on SaaS, VoIP, Virtualization, and
now Cloud systems. He is the author of Automating vSphere 5 with vCenter Orchestrator on
VMware press. He also hosts a weekly OpenStack podcast called the #vBrownBags, as well as
blogs OpenStack related tips and tricks on openstack.prov12n.com. He can also be found
on twitter as @cody_bunch

First and foremost, I would like to thank my wife, who after tolerating
me while I wrote the first book said "never again". As I told her about the
contract for this book, she greeted it with a smile, and continues to be
my first and best support.

I'd also like to thank Kevin for the opportunity to work on this edition of
the manuscript, even if I did sort of push him into it. I've learned an awful
lot about OpenStack and Open Source in general during the writing that
otherwise would not have happened.

Additionally, I'd be amiss if I didn't that my employer, Rackspace, for granting
me the time and flexibility needed to get this into the hands of
the community.

Finally, this is where I thank my parents, educators, and the small army
of folks who made the book possible.

About the Reviewers

Mike Dugan is an IT generalist having a broad range of technical experience over his 14
years working in various IT roles. He currently works as a Principal Technologist in the Office
of the CTO at the pioneer and market leader in Converged Infrastructure where his focus
is around technical product strategy and innovation involving private/hybrid/public cloud
computing and management, virtualization, open source cloud platforms, and next generation
applications. Mike's past experience includes Senior Technical Support and Principal
Engineer roles at the global leader in Data Storage as well as a Development Infrastructure
Administrator role at a leading NY-based Financial corporation.

Mike holds a B.Sc. in Information Systems from Pace University. He is married with two
sons, and lives in a suburb of New York City, where he is an active member of the local STEM
(Science, Technology, Engineering, Math) alliance helping to introduce and cultivate STEM
ideas and practices into the local community and school system. Mike loves learning new
technologies and the challenges that come with it. He is a die-hard NY Yankees and NY
Giants fan and loves watching, playing, and coaching sports with his two boys. He is also a
lover of all things craft beer.

Lauren Malhoit has been in the IT field for over 10 years. She's currently a post-sales
engineer specializing in virtualization in the data center. She has been writing for over a year
for TechRepublic and TechRepublic Pro and also hosts a bi-weekly podcast called AdaptingIT
(http://www.adaptingit.com/). She has also participated as a delegate in Tech Field
Day events.

I'd like to thank my mom, Monica Malhoit, for always being a great role
model and for providing me with both a formal and informal education.

http://www.adaptingit.com/

Paul Richards has over 18 years of experience in IT and is currently leading the OpenStack
practice at World Wide Technology. As a Solutions Architect for WWT, Paul has worked with
many clients to design and implement cloud computing solutions. Prior to joining WWT, Paul
led the engineering team at SunGard.

He occassionally writes about technology on his blog eprich.com and runs the OpenStack
Philly meetup group. Paul enjoys brewing beer and grilling food in his spare time.

Trevor Roberts Jr. is a Senior Corporate Architect for VCE where he helps customers
achieve success with Virtualization and Cloud solutions. In his spare time, Trevor enjoys
sharing his insights on data center technologies at http://www.VMTrooper.com and
via his Twitter handle @VMTrooper

I would like to thank my wife, Ivonne, for supporting me as I spent even
more time in the lab working on this book.

I would also like to thank the OpenStack Community for sharing their
expertise. It is not a trivial task to learn a new platform, and the Community
Experts have certainly made things easier.

Maish Saidel-Keesing is a Systems Architect working in Israel. He first started playing
around with computers when the Commodore 64 and ZX Spectrum were around, and has been
at it ever since. He has been working in IT for the past 15 years with Microsoft infrastructures
and specifically with VMware environments for the last 7 years. He co-authored the VMware
vSphere Design Book and was awarded the VMware vExpert award 4 consecutive times between
2010-2013, for his contribution to the virtualization community. He holds several certifications
from several international vendors such as VMware, Microsoft, IBM, RedHat, and Novell.

He is a member of Server Virtualization Advisory Board of
http://searchservervirtualization.techtarget.com where he provides regular
insight and contributions about the virtualization industry. On his popular blog Technodrone,
http://technodrone.blogspot.com, he regularly writes about VMware, Architecture,
Virtualization, Windows, PowerShell, PowerCLI scripting, and how to go virtual in the physical
world. When he has some free time, he likes to listen to music, and spend time with his family
and in general spends too much of his time on the computer.

Sean Winn is a cloud architect with more than 20 years of experience in the IT industry.
Originally from Fort Lauderdale, Florida, Sean relocated to the San Francisco Bay area of
California in 2011 with his family. Sean is an active member of the OpenStack Foundation
and works very closely with users and operators with regard to implementing and operating
OpenStack based clouds. You can regularly find Sean attending OpenStack (and various
other) User Group meetings in Mountain View, Sunnyvale, and San Francisco, California.

Eric Wright is a Systems Architect with a background in virtualization, Business Continuity,
PowerShell scripting, and systems automation in many industries including financial services,
health services and engineering firms. As the author behind www.DiscoPosse.com, a
technology and virtualization blog, Eric is also a regular contributor to community driven
technology groups such as the VMUG organization in Toronto, Canada. You can connect with
Eric at www.twitter.com/DiscoPosse.

When Eric is not working in technology, you may find him with a guitar in his hand or riding a
local bike race or climbing over the obstacles on a Tough Mudder course. Eric also commits
time regularly to charity bike rides and running events to help raise awareness and funding for
cancer research through a number of organizations.

I wish I could thank everyone personally, but let me say thank you to my
family, friends, and the very special people who've inspired me to be involved
with technology. Thank you to the amazing and very accepting technology
community who have helped me to be able to share my knowledge and to
learn from the amazing minds that drive this incredible community.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Keystone OpenStack Identity Service	 5

Introduction	 5
Creating a sandbox environment using VirtualBox and Vagrant	 6
Configuring Ubuntu Cloud archive	 10
Installing OpenStack Identity service	 11
Creating tenants	 15
Configuring roles	 17
Adding users	 19
Defining service endpoints	 23
Creating the service tenant and service users	 29

Chapter 2: Starting OpenStack Image Service	 35
Introduction	 35
Installing OpenStack Image Service	 36
Configuring OpenStack Image Service with MySQL	 38
Configuring OpenStack Image Service with OpenStack Identity Service	 40
Managing images with OpenStack Image Service	 42
Registering a remotely stored image 	 46
Sharing images among tenants 	 48
Viewing shared images	 49

Chapter 3: Starting OpenStack Compute	 51
Introduction	 52
Installing OpenStack Compute Controller services	 53
Creating a sandbox Compute server with VirtualBox and Vagrant	 55
Installing OpenStack Compute packages	 58
Configuring database services	 60
Configuring OpenStack Compute	 61
Configuring OpenStack Compute with OpenStack Identity Service	 66
Stopping and starting Nova services	 67

ii

Table of Contents

Installation of command-line tools on Ubuntu	 69
Checking OpenStack Compute services	 70
Using OpenStack Compute	 73
Managing security groups	 74
Creating and managing keypairs	 76
Launching our first Cloud instance	 79
Terminating your instance	 82

Chapter 4: Installing OpenStack Object Storage	 85
Introduction	 86
Creating an OpenStack Object Storage sandbox environment	 86
Installing OpenStack Object Storage	 89
Configuring storage	 91
Configuring replication	 94
Configuring OpenStack Object Storage Service	 97
Configuring OpenStack Object Storage proxy server	 98
Configuring Account Server	 101
Configuring Container Server	 102
Configuring Object Server	 104
Making rings	 106
Stopping and starting OpenStack Object Storage	 109
Configuring OpenStack Object Storage with OpenStack Identity Service	 110
Setting up SSL access	 114
Testing OpenStack Object Storage	 116

Chapter 5: Using OpenStack Object Storage	 117
Introduction	 117
Installing the swift client tool	 117
Creating containers	 119
Uploading objects	 120
Uploading large objects	 122
Listing containers and objects	 123
Downloading objects	 125
Deleting containers and objects	 127
Using OpenStack Object Storage ACLs	 128

Chapter 6: Administering OpenStack Object Storage	 131
Introduction	 131
Preparing drives for OpenStack Object Storage	 132
Managing OpenStack Object Storage cluster with swift-init	 134
Checking cluster health	 135
Benchmarking OpenStack Object Storage	 137
Managing swift cluster capacity	 138

iii

Table of Contents

Removing nodes from a cluster	 143
Detecting and replacing failed hard drives	 145
Collecting usage statistics	 146

Chapter 7: Starting OpenStack Block Storage	 151
Introduction	 151
Configuring Cinder volume services	 152
Configuring OpenStack Compute for Cinder volume	 154
Creating volumes	 159
Attaching volumes to an instance	 162
Detaching volumes from an instance	 163
Deleting volumes	 165

Chapter 8: OpenStack Networking	 167
Introduction	 168
Configuring Flat networking with DHCP	 168
Configuring VLAN Manager networking	 172
Configuring per tenant IP ranges for VLAN Manager	 175
Automatically assigning fixed networks to tenants	 177
Modifying a tenant's fixed network	 178
Manually associating floating IPs to instances	 180
Manually disassociating floating IPs from instances	 181
Automatically assigning floating IPs	 182
Creating a sandbox Network server for Neutron with
VirtualBox and Vagrant	 184
Installing and configuring OVS for Neutron	 187
Installing and configuring the Neutron API server	 194
Configuring Compute nodes for Neutron	 198
Creating a Neutron network	 203
Deleting a Neutron network	 207
Creating an external Neutron network	 210

Chapter 9: Using OpenStack Dashboard	 217
Introduction	 217
Installing OpenStack Dashboard	 218
Using OpenStack Dashboard for key management	 219
Using OpenStack Dashboard to manage Neutron networks	 224
Using OpenStack Dashboard for security group management	 230
Using OpenStack Dashboard to launch instances	 235
Using OpenStack Dashboard to terminate instances	 238
Using OpenStack Dashboard for connecting to instances using VNC	 239
Using OpenStack Dashboard to add new tenants	 241
Using OpenStack Dashboard for user management	 245

iv

Table of Contents

Chapter 10: Automating OpenStack Installations	 251
Introduction	 251
Installing Opscode Chef Server	 252
Installing Chef Client	 255
Downloading cookbooks to support DHCP, Razor, and OpenStack	 256
Installing PuppetLabs Razor and DHCP from cookbooks	 258
Setting up a Chef environment for OpenStack 	 260
Booting the first OpenStack node into Razor	 264
Defining a Razor broker, model, and policy	 264
Monitoring the node installation	 269
Using Chef to install OpenStack	 269
Expanding our OpenStack environment	 270

Chapter 11: Highly Available OpenStack	 273
Introduction	 273
Using Galera for MySQL clustering	 274
Configuring HA Proxy for MySQL Galera load balancing	 283
Installing and setting up Pacemaker and Corosync	 289
Configuring Keystone and Glance with Pacemaker and Corosync	 294
Bonding network interfaces for redundancy	 300

Chapter 12: Troubleshooting	 303
Introduction	 303
Understanding logging	 304
Checking OpenStack services	 308
Troubleshooting OpenStack Compute services	 316
Troubleshooting OpenStack Object Storage services	 322
Troubleshooting OpenStack Dashboard	 323
Troubleshooting OpenStack Authentication	 327
Troubleshooting OpenStack Networking	 329
Submitting Bug reports	 331
Getting help from the community	 334

Chapter 13: Monitoring	 337
Introduction	 337
Monitoring OpenStack services with Nagios	 338
Monitoring Compute services with Munin	 345
Monitoring instances using Munin and Collectd	 350
Monitoring the storage service using StatsD/Graphite	 355
Monitoring MySQL with Hyperic	 360

Index	 369

Preface
OpenStack is open source software for building public and private clouds. It is now a global
success and, is developed and supported by thousands of people around the globe and
backed by leading players in the cloud space today. This book is specifically designed
to quickly help you get up to speed with OpenStack and give you the confidence and
understanding to roll it out into your own datacenters. From test installations of OpenStack
running under VirtualBox to automated installation recipes with Razor and Chef that help
you scale out production environments, this book covers a wide range of topics that help you
install and configure a private cloud. This book will show you:

ff How to install and configure all the core components of OpenStack to run an
environment that can be managed and operated just like Rackspace, HP Cloud
Services, and other cloud environments

ff How to master the complete private cloud stack, from scaling out Compute resources
to managing object storage services for highly redundant, highly available storage

ff Practical, real-world examples of each service built upon in each chapter, allowing you
to progress with the confidence that they will work in your own environments

The OpenStack Cloud Computing Cookbook, Second Edition gives you clear, step-by-step
instructions to install and run your own private cloud successfully. It is full of practical and
applicable recipes that enable you to use the latest capabilities of OpenStack and
implement them.

What this book covers
Chapter 1, Keystone OpenStack Identity Service, takes you through installation and
configuration of Keystone, which underpins all of the other OpenStack services.

Chapter 2, Starting OpenStack Image Service, teaches you how to install, configure, and use
the image service for use within an OpenStack environment.

Chapter 3, Starting OpenStack Compute, teaches you how to set up and use OpenStack
Compute with examples to get you started by running within a VirtualBox environment.

Preface

2

Chapter 4, Installing OpenStack Storage, teaches you how to configure and use OpenStack
Object Storage with examples showing this service running within a VirtualBox environment.

Chapter 5, Using OpenStack Object Storage, teaches you how to use the storage service for
storing and retrieving files and objects.

Chapter 6, Administering OpenStack Object Storage, takes you through how to use tools and
techniques that can be used for running OpenStack Storage within datacenters.

Chapter 7, Starting OpenStack Block Storage, teaches you how to install and configure the
persistent block storage service for use by instances running in an OpenStack Compute
environment.

Chapter 8, OpenStack Networking, helps you install and configure OpenStack Networking
including Nova Network and Neutron.

Chapter 9, Using OpenStack Dashboard, teaches you how to install and use the Web
user interface to perform tasks such as creating users, modifying security groups, and
launching instances.

Chapter 10, Automating OpenStack Installations, takes you through setting up Razor and Chef
for installing OpenStack.

Chapter 11, Highly Available OpenStack, introduces you to tools and techniques for making
OpenStack services resilient and highly available.

Chapter 12, Troubleshooting, takes you through an understanding of the logs and where to
get help, when encountering issues while running an OpenStack environment.

Chapter 13, Monitoring, shows you how to install and configure various open source tools for
monitoring an OpenStack installation.

What you need for this book
To use this book, you will need access to computers or servers that have hardware
virtualization capabilities. To set up the lab environments you will install and use Oracle's
VirtualBox and Vagrant. You will also need access to an Ubuntu 12.04 ISO image, as the
methods presented detail steps for Ubuntu environments.

Who this book is for
This book is aimed at system administrators and technical architects moving from a
virtualized environment to cloud environments who are familiar with cloud computing
platforms. Knowledge of virtualization and managing Linux environments is expected.
Prior knowledge or experience of OpenStack is not required, although beneficial.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

nodes = {
 'controller' => [1, 200],
}

Vagrant.configure("2") do |config|

Any command-line input or output is written as follows:

vagrant up controller

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded on our website, or added to any list of existing
errata, under the Errata section of that title. Any existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Keystone OpenStack

Identity Service

In this chapter, we will cover:

ff Creating a sandbox environment using VirtualBox and Vagrant

ff Configuring Ubuntu Cloud archive

ff Installing OpenStack Identity service

ff Creating tenants

ff Configuring roles

ff Adding users

ff Defining service endpoints

ff Creating the service tenant and service users

Introduction
The OpenStack Identity service, known as Keystone, provides services for authenticating
and managing user accounts and role information for our OpenStack cloud environment.
It is a crucial service that underpins the authentication and verification between all of our
OpenStack cloud services and is the first service that needs to be installed within an OpenStack
environment. Authentication with OpenStack Identity service sends back an authorization token
that is passed between the services, once validated. This token is subsequently used as your
authentication and verification that you can proceed to use that service, such as OpenStack
Storage and Compute. As such, configuration of the OpenStack Identity service must be
done first and consists of creating appropriate roles for users and services, tenants, the user
accounts, and the service API endpoints that make up our cloud infrastructure.

Keystone OpenStack Identity Service

6

At the end of this chapter, we will have the following environment setup:

vboxnet0

eth0

172.16.0.200/16 10.10.0.200/16
VIRTUAL BOX

(Host)

172.16.0.1/16

10.10.0.1/16

vboxnet1

vboxnet2

Controller

MySQL
Keystone

eth1 eth2

Management/Public Network 172.16.0.0/16

Data Network 10.10.0.0/16

Creating a sandbox environment using
VirtualBox and Vagrant

Creating a sandbox environment using VirtualBox and Vagrant allows us to discover and
experiment with the OpenStack Compute service. VirtualBox gives us the ability to spin up
virtual machines and networks without affecting the rest of our working environment, and
is freely available at http://www.virtualbox.org for Windows, Mac OS X, and Linux.
Vagrant allows us to automate this task, meaning we can spend less time creating our test
environments and more time using OpenStack. Vagrant is installable using Ubuntu's package
management, but for other operating systems, visit http://www.vagrantup.com/.
This test environment can then be used for the rest of this chapter.

It is assumed that the computer you will be using to run your test environment in has enough
processing power that has hardware virtualization support (for example, Intel VT-X and AMD-V
support with at least 8 GB RAM. Remember we're creating a virtual machine that itself will be
used to spin up virtual machines, so the more RAM you have, the better.

Chapter 1

7

Getting ready
To begin with, we must download VirtualBox from http://www.virtualbox.org/ and
then follow the installation procedure once this has been downloaded.

We also need to download and install Vagrant, which will be covered in the later part.

The steps throughout the book assume the underlying operating system that will be used to
install OpenStack on will be Ubuntu 12.04 LTS release. We don't need to download a Ubuntu
12.04 ISO as we use our Vagrant environment do this for us.

How to do it...
To create our sandbox environment within VirtualBox, we will use Vagrant to define a single
virtual machine that allows us to run all of the OpenStack Compute services required to
run cloud instances. This virtual machine, that we will refer to as the OpenStack Controller,
will be configured with at least 2 GB RAM and 20 GB of hard drive space and have three
network interfaces. Vagrant automatically sets up an interface on our virtual machine, that
is, NAT (Network Address Translate), which allows our virtual machine to connect to the
network outside of VirtualBox to download packages. This NAT interface is not mentioned
in our Vagrantfile but will be visible on our virtual machine as eth0. We configure our
first interface for use in our OpenStack environment, which will be the public interface of our
OpenStack Compute host, a second interface will be for our private network that OpenStack
Compute uses for internal communication between different OpenStack Compute hosts, and
a third interface will be used when we look at Neutron networking in Chapter 8, OpenStack
Networking, as an external provider network.

Carry out the following steps to create a virtual machine with Vagrant that will be used to run
OpenStack Compute services:

1.	 Install VirtualBox from http://www.virtualbox.org/. You will encounter issues
if you are using the version shipped with Ubuntu 12.04 LTS.

The book was written using VirtualBox Version 4.2.16.

2.	 Install Vagrant from http://www.vagrantup.com/. You will encounter issues if
you are using the version shipped with Ubuntu 12.04 LTS.

The book was written using Vagrant Version 1.2.7.

Keystone OpenStack Identity Service

8

3.	 Once installed, we can define our virtual machine and networking in a file called
Vagrantfile. To do this, create a working directory (for example, create ~/
cookbook and edit a file in here called Vagrantfile as shown in the
following command snippet:
mkdir ~/cookbook

cd ~/cookbook

vim Vagrantfile

4.	 We can now proceed to configure Vagrant by editing this file with the following code:
-*- mode: ruby -*-
vi: set ft=ruby :

nodes = {
 'controller' => [1, 200],
}

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
 config.vm.box_url =
 "http://files.vagrantup.com/precise64.box"

 # Forescout NAC workaround
 config.vm.usable_port_range = 2800..2900

 nodes.each do |prefix, (count, ip_start)|
 count.times do |i|
 hostname = "%s" % [prefix, (i+1)]

 config.vm.define "#{hostname}" do |box|
 box.vm.hostname = "#{hostname}.book"
 box.vm.network :private_network, ip:
 "172.16.0.#{ip_start+i}", :netmask =>
 "255.255.0.0"
 box.vm.network :private_network, ip:
 "10.10.0.#{ip_start+i}", :netmask =>
 "255.255.0.0"
 box.vm.network :private_network, ip:
 "192.168.100.#{ip_start+i}", :netmask =>
 "255.255.255.0"

Chapter 1

9

 # Otherwise using VirtualBox
 box.vm.provider :virtualbox do |vbox|
 # Defaults
 vbox.customize ["modifyvm", :id, "--memory",
 2048]
 vbox.customize ["modifyvm", :id, "--cpus", 1]
 end
 end
 end
 end
end

5.	 We are now ready to power on our controller node. We do this by simply running the
following command:

vagrant up controller

Congratulations! We have successfully created the VirtualBox virtual machine
running on Ubuntu 12.04 which is able to run OpenStack Controller services.

How it works...
What we have done is created a virtual machine within VirtualBox by defining it in Vagrant.
Vagrant then configures this virtual machine, based on the settings given in Vagrantfile in the
directory where we want to store and run our VirtualBox virtual machines from. This file is
based on Ruby syntax, but the lines are relatively self-explanatory. We have specified some
of the following:

ff The hostname is called "controller"

ff The VM is based on Precise64, an alias for Ubuntu 12.04 LTS 64-bit

ff We have specified 2GB RAM, 1 CPU, and an extra hard disk attached to our VM
called "controller-cinder.vdi" that we will utilize later in our book.

We then launch this VirtualBox VM using Vagrant with the help of the following
simple command:

vagrant up

This will launch all VMs listed in the Vagrantfile. As we have only one, this VM is the only one
that is started.

To log in to this new virtual machine, we use the following command:

vagrant ssh controller

Keystone OpenStack Identity Service

10

There's more...
You are not limited to Vagrant and VirtualBox for setting up a test environment. There are a
number of virtualization products available that are suitable for trying OpenStack, for example,
VMware Server, VMware Player, and VMware Fusion are equally suitable.

See also
ff Chapter 10, Automating OpenStack Installations

Configuring Ubuntu Cloud archive
Ubuntu 12.04 LTS, the release used throughout this book, provides two repositories for
installing OpenStack. The standard repository ships with the Essex release whereas a
further supported repository is called the Ubuntu Cloud Archive provides access to the latest
release (at time of writing), Grizzly. We will be performing an installation and configuration of
OpenStack Identity service (as well as the rest of the OpenStack services) with packages from
the Ubuntu Cloud Archive to provide us with the Grizzly release of software.

Getting ready
Ensure you're logged in to the nominated OpenStack Identity server or OpenStack Controller
host where OpenStack Identity service will be installed that the rest of the OpenStack hosts
will have access to.

How to do it...
Carry out the following steps to configure Ubuntu 12.04 LTS to use the Ubuntu Cloud Archive:

1.	 To access the Ubuntu Cloud Archive repository, we add this to our apt sources
as follows:
echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu \
echo \
"deb http://ubuntu-cloud.archive.canonical.com/ubuntu \
 precise-proposed/grizzly main" \
 | sudo tee /etc/apt/sources.list.d/folsom.list

2.	 Before we can use this, we need to ensure we have the Ubuntu Cloud Archive key.
We add this as follows:

sudo apt-get update

sudo apt-get -y install ubuntu-cloud-keyring

Chapter 1

11

How it works...
What we're doing here is adding an extra repository to our system that provides us with a
tested set of packages of OpenStack that is fully supported on Ubuntu 12.04 LTS release.
The packages in here will then be ones that will be used when we perform installation of
OpenStack on our system.

There's more...
More information about the Ubuntu Cloud Archive can be found by visiting the following
address: https://wiki.ubuntu.com/ServerTeam/CloudArchive. This explains the
release process and the ability to use latest releases of OpenStack—where new versions are
released every 6 months—on a long term supported release of Ubuntu that gets released
every 2 years.

Using an alternative release
If you wish to optionally deviate from stable releases, it is appropriate when you are helping
to develop or debug OpenStack, or require functionality that is not available in the current
release. To enable different releases, you add different Personal Package Archives (PPA) to
your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To
use them, we first install a pre-requisite tool that allows us to easily add PPAs to our system,
as shown as follows:

sudo apt-get update

sudo apt-get -y install python-software-properties

To use a particular release of PPA, for example, Havana trunk testing, we issue the
following command:

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

Installing OpenStack Identity service
We will be performing an installation and configuration of OpenStack Identity service, known
as Keystone, using the Ubuntu Cloud Archive. Once configured, connecting to our OpenStack
cloud environment will be performed through our new OpenStack Identity service.

The backend datastore for our OpenStack Identity service will be a MySQL database.

Keystone OpenStack Identity Service

12

Getting ready
To ensure we're running the Ubuntu Cloud Archive, we must first configure our Ubuntu 12.04
installation to use this service.

We will configure Keystone to use MySQL as the database backend, so this needs to be
installed prior to installing Keystone. If MySQL is not installed, perform the following steps to
install and configure MySQL:

MYSQL_ROOT_PASS=openstack

MYSQL_HOST=172.16.0.200

To enable non-interactive installations of MySQL, set the following

echo "mysql-server-5.5 mysql-server/root_password password \

 $MYSQL_ROOT_PASS" | sudo debconf-set-selections

echo "mysql-server-5.5 mysql-server/root_password_again password \

 $MYSQL_ROOT_PASS" | sudo debconf-set-selections

echo "mysql-server-5.5 mysql-server/root_password seen true" \

 | sudo debconf-set-selections

echo "mysql-server-5.5 mysql-server/root_password_again seen true" \

 | sudo debconf-set-selections

export DEBIAN_FRONTEND=noninteractive

sudo apt-get update

sudo apt-get -q -y install mysql-server

sudo sed -i "s/^bind\-address.*/bind-address = ${MYSQL_HOST}/g" \

 /etc/mysql/my.cnf

sudo service mysql restart

mysqladmin -uroot password ${MYSQL_ROOT_PASS}

mysql -u root --password=${MYSQL_ROOT_PASS} -h localhost \

 -e "GRANT ALL ON *.* to root@\"localhost\" IDENTIFIED BY \"${MYSQL_
ROOT_PASS}\" WITH GRANT OPTION;"

mysql -u root --password=${MYSQL_ROOT_PASS} -h localhost \

 -e "GRANT ALL ON *.* to root@\"${MYSQL_HOST}\" IDENTIFIED BY
\"${MYSQL_ROOT_PASS}\" WITH GRANT OPTION;"

Chapter 1

13

mysql -u root --password=${MYSQL_ROOT_PASS} -h localhost \

 -e "GRANT ALL ON *.* to root@\"%\" IDENTIFIED BY \"${MYSQL_ROOT_
PASS}\" WITH GRANT OPTION;"

mysqladmin -uroot -p${MYSQL_ROOT_PASS} flush-privileges

Next ensure that you're logged in to the nominated OpenStack Identity server or OpenStack
Controller host where OpenStack Identity service will be installed and the rest of the
OpenStack hosts will have access to.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

How to do it...
Carry out the following instructions to install OpenStack Identity service:

1.	 Installation of OpenStack Identity service is done by specifying the keystone package
in Ubuntu, and we do this as follows:
sudo apt-get update

sudo apt-get -y install keystone python-keyring

2.	 Once installed, we need to configure the backend database store, so we first create
the keystone database in MySQL. We do this as follows (where we have a user in
MySQL called root, with password openstack, that is able to create databases):
MYSQL_ROOT_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "CREATE DATABASE \

 keystone;"

3.	 It is a good practice to create a user that is specific to our OpenStack Identity service,
so we create this as follows:
MYSQL_KEYSTONE_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES \

 ON keystone.* TO 'keystone'@'%';"

mysql -uroot -p$MYSQL_ROOT_PASS -e "SET PASSWORD FOR \

 'keystone'@'%' = PASSWORD('$MYSQL_KEYSTONE_PASS');"

Keystone OpenStack Identity Service

14

4.	 We then need to configure OpenStack Identity service to use this database by editing
the /etc/keystone/keystone.conf file, and then change the sql_connection
line to match the database credentials. We do this as follows:
MYSQL_HOST=172.16.0.200

sudo sed -i "s#^connection.*#connection = \

 mysql://keystone:openstack@172.16.0.200/keystone#" \

 /etc/keystone/keystone.conf

5.	 A super-user admin token resides in the /etc/keystone/keystone.conf file. To
configure this we do the following:
sudo sed -i "s/^# admin_token.*/admin_token = ADMIN" \

 /etc/keystone/keystone.conf

6.	 As of the Grizzly release, Keystone supports PKI infrastructure to cryptographically
sign the tokens. To disable this feature for now, we edit the /etc/keystone/
keystone.conf file to use non-signed tokens as follows:
sudo sed -i "s/^#token_format.*/token_format = UUID" \

 /etc/keystone/keystone.conf

7.	 We can now restart the keystone service:
sudo stop keystone

sudo start keystone

8.	 With Keystone started, we can now populate the keystone database with the
required tables, by issuing the following command:

sudo keystone-manage db_sync

Congratulations! We now have the OpenStack Identity service
installed and ready for use in our OpenStack environment.

How it works...
A convenient way to install OpenStack Identity service ready for use in our OpenStack
environment is by using the Ubuntu packages. Once installed, we configure our MySQL
database server with a keystone database and set up the keystone.conf configuration
file to use this. After starting the Keystone service, running the keystone-manage db_sync
command populates the keystone database with the appropriate tables ready for us to add
in the required users, roles, and tenants required in our OpenStack environment.

Chapter 1

15

Creating tenants
A tenant in OpenStack is a project. Users can't be created without having a tenant assigned
to them so these must be created first. For this section, we will create a tenant for our users,
called cookbook.

Getting ready
To begin with, ensure you're logged into our OpenStack Controller host—where OpenStack
Identity service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity service is installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

If the keystoneclient tool isn't available, this can be installed on an Ubuntu
client—to manage our OpenStack Identity service—by issuing the following command:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment
for administrative purposes:

export ENDPOINT=1172.16.172.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Keystone OpenStack Identity Service

16

How to do it...
To create a tenant in our OpenStack environment, perform the following steps:

1.	 Creation of a tenant called cookbook is done as follows:
keystone tenant-create \

 --name cookbook \

 --description "Default Cookbook Tenant" \

 --enabled true

This will produce output like shown as follows:

2.	 We also need an admin tenant, so when we create users in this tenant they have
access to our complete environment. We do this in the same way as in the previous
step:

keystone tenant-create \

 --name cookbook \

 --description "Admin Tenant" \

 --enabled true

How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the
tenant-create option with the following syntax:

keystone tenant-create \

 --name tenant_name \

 --description "A description" \

 --enabled true

The tenant_name is an arbitrary string and must not contain spaces. On creation of the
tenant, this returns an ID associated with it that we use when adding users to this tenant.
To see a list of tenants and the associated IDs in our environment, we can issue the
following command:

keystone tenant-list

Chapter 1

17

Configuring roles
Roles are the permissions given to users within a tenant. Here we will configure two roles, an
admin role that allows for administration of our environment and a Member role that is given
to ordinary users who will be using the cloud environment.

Getting ready
To begin with, ensure that you're logged in to our OpenStack Controller host—where
OpenStack Identity service has been installed—or an appropriate Ubuntu client that has
access to where OpenStack Identity service is installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

If the keystoneclient tool isn't available, this can be installed on any Ubuntu client that
has access to manage our OpenStack Identity service by issuing the following commands:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

To configure the OpenStack Identity service, we use super-user privileges in the form of a
permanently set admin token set in the /etc/keystone/keystone.conf file, along with
setting the correct environment variables for this purpose as shown as follows:

export ENDPOINT=172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Keystone OpenStack Identity Service

18

How to do it...
To create the required roles in our OpenStack environment, perform the following steps:

1.	 Creation of the admin role is done as follows:
admin role

keystone role-create --name admin

This will show output like the following when successful:

2.	 To create the Member role we repeat the step, specifying the Member role:

Member role

keystone role-create --name Member

How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the role-
create option with the following syntax:

keystone role-create --name role_name

The role_name attribute can't be arbitrary. The admin role has been set in /etc/
keystone/policy.json as having administrative rights:

{
 "admin_required": [["role:admin"], ["is_admin:1"]]
}

And when we configure the OpenStack Dashboard, Horizon, it has the Member role configured
as default when users are created in that interface.

On creation of the role, this returns an ID associated with it that we use when assigning roles
to users. To see a list of roles and the associated IDs in our environment, we can issue the
following command:

keystone role-list

Chapter 1

19

Adding users
Adding users to OpenStack Identity service requires that the user have a tenant they can exist
in, and have a role defined that can be assigned to them. For this section, we will create two
users. The first user will be named admin and will have the admin role assigned to them in
the cookbook tenant. The second user will be named demo and will have the Member role
assigned to them in the same cookbook tenant.

Getting ready
To begin with, ensure that you're logged in to our OpenStack Controller host—where
OpenStack Identity service has been installed—or an appropriate Ubuntu client that has
access to where OpenStack Identity service is installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

If the keystone client tool isn't available, this can be installed on an Ubuntu client—to
manage our OpenStack Identity service—by issuing the following commands:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment
for administrative purposes:

export ENDPOINT=172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

How to do it...
To create the required users in our OpenStack environment, perform the following steps:

1.	 To create a user in the cookbook tenant, we first need to get the cookbook tenant
ID. To do this, issue the following command, which we conveniently store in a variable
named TENANT_ID with the tenant-list option:
TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

Keystone OpenStack Identity Service

20

2.	 Now that we have the tenant ID, creation of the admin user in the cookbook tenant
is done as follows, using the user-create option, choosing a password for the user:
PASSWORD=openstack

keystone user-create \

 --name admin \

 --tenant_id $TENANT_ID \

 --pass $PASSWORD \

 --email root@localhost \

 --enabled true

This will produce the following output:

3.	 As we are creating the admin user, which we are assigning the admin role, we need
the admin role ID. In a similar way to the discovery of the tenant ID in step 1, we pick
out the ID of the admin role and conveniently store it in a variable to use it when
assigning the role to the user with the role-list option:
ROLE_ID=$(keystone role-list \

 | awk '/\ admin\ / {print $2}')

4.	 To assign the role to our user, we need to use the user ID that was returned when
we created that user. To get this, we can list the users and pick out the ID for that
particular user with the following user-list option:
USER_ID=$(keystone user-list \

 | awk '/\ admin\ / {print $2}')

5.	 Finally, with the tenant ID, user ID, and an appropriate role ID available, we can
assign that role to the user, with the following user-role-add option:
keystone user-role-add \

 --user $USER_ID \

 --role $ROLE_ID \

 --tenant_id $TENANT_ID

Note that there is no output produced on successfully
running this command.

Chapter 1

21

6.	 The admin user also needs to be in the admin tenant for us to be able to administer
the complete environment. To do this we need to get the admin tenant ID and then
repeat the previous step, using this new tenant ID, as follows:
ADMIN_TENANT_ID=$(keystone tenant-list \

 | awk '/\ admin\ / {print $2}')

keystone user-role-add \

 --user $USER_ID \

 --role $ROLE_ID \

 --tenant_id $ADMIN_TENANT_ID

7.	 To create the demo user in the cookbook tenant with the Member role assigned,
we repeat the process as defined in steps 1 to 5:

Get the cookbook tenant ID

TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

Create the user

PASSWORD=openstack

keystone user-create \

 --name demo \

 --tenant_id $TENANT_ID \

 --pass $PASSWORD \

 --email demo@localhost \

 --enabled true

Get the Member role ID

ROLE_ID=$(keystone role-list \

 | awk '/\ Member\ / {print $2}')

Get the demo user ID

USER_ID=$(keystone user-list \

 | awk '/\ demo\ / {print $2}')

Assign the Member role to the demo user in cookbook

keystone user-role-add \

 --user $USER_ID \

 -–role $ROLE_ID \

 --tenant_id $TENANT_ID

Keystone OpenStack Identity Service

22

How it works...
Adding users in OpenStack Identity service requires that the tenant and roles for that user
be created first. Once these are available, in order to use the keystone command-line client,
we need the IDs of the tenants and IDs of the roles that are to be assigned to the user in
that tenant. Note that a user can be a member of many tenants and can have different roles
assigned in each.

To create a user with the user-create option, the syntax is as follows:

keystone user-create \

 --name user_name \

 --tenant_id TENANT_ID \

 --pass PASSWORD \

 --email email_address \

 --enabled true

The user_name attribute is an arbitrary name but cannot contain any spaces. A password
attribute must be present. In the previous examples, these were set to openstack. The
email_address attribute must also be present.

To assign a role to a user with the user-role-add option, the syntax is as follows:

keystone user-role-add \

 --user USER_ID \

 --role ROLE_ID \

 --tenant_id TENANT_ID

This means we need to have the ID of the user, the ID of the role, and the ID of the tenant in
order to assign roles to users. These IDs can be found using the following commands:

keystone tenant-list

keystone role-list

keystone user-list

Chapter 1

23

Defining service endpoints
Each of the services in our cloud environment runs on a particular URL and port—these are
the endpoint addresses for our services. When a client communicates with our OpenStack
environment that runs OpenStack Identity service, it is this service that returns the endpoint
URLs, which the user can then use in an OpenStack environment. To enable this feature, we
must define these endpoints. In a cloud environment though, we can define multiple regions.
Regions can be thought of as different datacenters, which would imply that they would have
different URLs or IP addresses. Under OpenStack Identity service, we can define these URL
endpoints separately for each region. As we only have a single environment, we will reference
this as RegionOne.

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host—where OpenStack
Identity service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity service is installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

If the keystone client tool isn't available, this can be installed on an Ubuntu
client—to manage our OpenStack Identity service—by issuing the following commands:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment for
administrative purposes:

export ENDPOINT=172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Keystone OpenStack Identity Service

24

How to do it...
Defining the services and service endpoints in OpenStack Identity service involves running
the keystone client command to specify the different services and the URLs that they run
from. Although we might not have all services currently running in our environment, we will
be configuring them within OpenStack Identity service for future use. To define endpoints for
services in our OpenStack environment, carry out the following steps:

1.	 We can now define the actual services that OpenStack Identity service needs to know
about in our environment:
OpenStack Compute Nova API Endpoint

keystone service-create \

 --name nova \

 --type compute \

 --description 'OpenStack Compute Service'

OpenStack Compute EC2 API Endpoint

keystone service-create \

 --name ec2 \

 --type ec2 \

 --description 'EC2 Service'

Glance Image Service Endpoint

keystone service-create \

 --name glance \

 --type image \

 --description 'OpenStack Image Service'

Keystone Identity Service Endpoint

keystone service-create \

 --name keystone \

 --type identity \

 --description 'OpenStack Identity Service'

#Cinder Block Storage Endpoint

keystone service-create \

 --name volume \

 --type volume \

 --description 'Volume Service'

Chapter 1

25

2.	 After we have done this, we can add in the service endpoint URLs that these services
run on. To do this, we need the ID that was returned for each of the service endpoints
created in the previous step. This is then used as a parameter when specifying the
endpoint URLS for that service.

OpenStack Identity service can be configured to service requests on three
URLs: a public facing URL (that the end users use), an administration URL
(that users with administrative access can use that might have a different
URL), and an internal URL (that is appropriate when presenting the services
on either side of a firewall to the public URL).

For the following services, we will configure the public and internal service URLs to be the
same, which is appropriate for our environment:

OpenStack Compute Nova API

NOVA_SERVICE_ID=$(keystone service-list \

 | awk '/\ nova\ / {print $2}')

PUBLIC="http://$ENDPOINT:8774/v2/\$(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $NOVA_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

This will produce output similar to what is shown below:

Keystone OpenStack Identity Service

26

3.	 We continue to define the rest of our service endpoints as shown in the
following steps:

OpenStack Compute EC2 API

EC2_SERVICE_ID=$(keystone service-list \

 | awk '/\ ec2\ / {print $2}')

PUBLIC="http://$ENDPOINT:8773/services/Cloud"

ADMIN="http://$ENDPOINT:8773/services/Admin"

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $EC2_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Glance Image Service

GLANCE_SERVICE_ID=$(keystone service-list \

 | awk '/\ glance\ / {print $2}')

PUBLIC="http://$ENDPOINT:9292/v1"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $GLANCE_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Chapter 1

27

Keystone OpenStack Identity Service

KEYSTONE_SERVICE_ID=$(keystone service-list \

 | awk '/\ keystone\ / {print $2}')

PUBLIC="http://$ENDPOINT:5000/v2.0"

ADMIN="http://$ENDPOINT:35357/v2.0"

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $KEYSTONE_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

#Cinder Block Storage ServiceService

CINDER_SERVICE_ID=$(keystone service-list \

 | awk '/\ volume\ / {print $2}')

PUBLIC="http://$ENDPOINT:8776/v1/%(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $CINDER_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Keystone OpenStack Identity Service

28

How it works...
Configuring the services and endpoints within OpenStack Identity service is done with the
keystone client command.

We first add the service definitions, by using the keystone client and the service-create
option with the following syntax:

keystone service-create \

 --name service_name \

 --type service_type \

 --description 'description'

service_name is an arbitrary name or label defining our service of a particular type. We
refer to the name when defining the endpoint to fetch the ID of the service.

The type option can be one of the following: compute, object-store, image-service,
and identity-service. Note that we haven't configured the OpenStack Object Storage
service (type object-store) or Cinder at this stage as these are covered in later recipes in
the book.

The description field is again an arbitrary field describing the service.

Once we have added in our service definitions, we can tell OpenStack Identity service where
those services run from, by defining the endpoints using the keystone client and the
endpoint-create option, with the following syntax:

keystone endpoint-create \

 --region region_name \

 --service_id service_id \

 --publicurl public_url \

 -–adminurl admin_url \

 --internalurl internal_url

Here service_id is the ID of the service when we created the service definitions in the first
step. The list of our services and IDs can be obtained by running the following command:

keystone service-list

As OpenStack is designed for global deployments, a region defines a physical datacenter or
a geographical area that comprises of multiple connected datacenters. For our purpose, we
define just a single region—RegionOne. This is an arbitrary name that we can reference when
specifying what runs in what datacenter/area and we carry this through to when we configure
our client for use with these regions.

Chapter 1

29

All of our services can be configured to run on three different URLs, as follows, depending on
how we want to configure our OpenStack cloud environment:

ff The public_url parameter is the URL that end users would connect on. In a public
cloud environment, this would be a public URL that resolves to a public IP address.

ff The admin_url parameter is a restricted address for conducting administration.
In a public deployment, you would keep this separate from the public_URL by
presenting the service you are configuring on a different, restricted URL. Some
services have a different URI for the admin service, so this is configured using this
attribute.

ff The internal_url parameter would be the IP or URL that existed only within the
private local area network. The reason for this is that you are able to connect to
services from your cloud environment internally without connecting over a public IP
address space, which could incur data charges for traversing the Internet. It is also
potentially more secure and less complex to do so.

Once the initial keystone database has been set up, after
running the initial keystone-manage db_sync command on
the OpenStack Identity service server, administration can be done
remotely using the keystone client.

Creating the service tenant and
service users

With the service endpoints created, we can now configure them so that our OpenStack
services can utilize them. To do this, each service is configured with a username and
password within a special service tenant. Configuring each service to have their own
username and password allows for greater security, troubleshooting and, auditing within our
environment. For each service that uses OpenStack Identity service for authentication and
authorization, we then specify these details in their relevant configuration file, when setting
up that service. Each service itself has to authenticate with keystone in order for it to be
available within OpenStack. Configuration of that service is then done using these credentials.
For example, for glance we specify the following in /etc/glance/glance-registry-api.
ini, when used with OpenStack Identity service, which matches what we created previously:

[filter:authtoken]

paste.filter_factory = keystone.middleware.auth_token:filter_factory

service_protocol = http

service_host = 172.16.0.200

service_port = 5000

Keystone OpenStack Identity Service

30

auth_host = 172.16.0.200

auth_port = 35357

auth_protocol = http

auth_uri = http://172.16.0.200:5000/

admin_tenant_name = service

admin_user = glance

admin_password = glance

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host—where OpenStack
Identity service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity service is installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

If the keystone client tool isn't available, this can be installed on an Ubuntu client to manage
our OpenStack Identity service, by issuing the following command:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment:

export ENDPOINT=1172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

How to do it...
To configure an appropriate service tenant, carry out the following steps:

1.	 Create the service tenant as follows:
keystone tenant-create \

 --name service \

 --description "Service Tenant" \

 --enabled true

Chapter 1

31

This produces output similar to what is shown as follows:

2.	 Record the ID of the service tenant, so that we can assign service users to this ID,
as follows:
SERVICE_TENANT_ID=$(keystone tenant-list \

 | awk '/\ service\ / {print $2}')

3.	 For each of the services in this section, we will create the user accounts to be named
the same as the services and set the password to be the same as the service name
too. For example, we will add a user called nova, with a password nova in the
service tenant, using the user-create option, as follows:
keystone user-create \

 --name nova \

 --pass nova \

 --tenant_id $SERVICE_TENANT_ID \

 --email nova@localhost \

 --enabled true

This will produce output similar to what is shown as follows:

4.	 We then repeat this for each of our other services that will use OpenStack
Identity service:
keystone user-create \

 --name glance \

 --pass glance \

 --tenant_id $SERVICE_TENANT_ID \

 --email glance@localhost \

 --enabled true

Keystone OpenStack Identity Service

32

keystone user-create \

 --name keystone \

 --pass keystone \

 --tenant_id $SERVICE_TENANT_ID \

 --emailkeystone@localhost \

 --enabled true

keystone user-create \

 --name cinder \

 --pass cinder \

 --tenant_id $SERVICE_TENANT_ID \

 --email cinder@localhost \

 --enabled true

5.	 We can now assign these users the admin role in the service tenant. To do this, we
use the user-role-add option after retrieving the user ID of the nova user. For
example, to add the admin role to the nova user in the service tenant, we do the
following:
Get the nova user id

NOVA_USER_ID=$(keystone user-list \

 | awk '/\ nova\ / {print $2}')

Get the admin role id

ADMIN_ROLE_ID=$(keystone role-list \

 | awk '/\ admin\ / {print $2}')

Assign the nova user the admin role in service tenant

keystone user-role-add \

 --user $NOVA_USER_ID \

 --role $ADMIN_ROLE_ID \

 --tenant_id $SERVICE_TENANT_ID

Chapter 1

33

6.	 We then repeat this for our other service users, glance,keystone and cinder:

Get the glance user id

GLANCE_USER_ID=$(keystone user-list \

 | awk '/\ glance\ / {print $2}')

Assign the glance user the admin role in service tenant

keystone user-role-add \

 --user $GLANCE_USER_ID \

 --role $ADMIN_ROLE_ID \

 --tenant_id $SERVICE_TENANT_ID

Get the keystone user id

KEYSTONE_USER_ID=$(keystone user-list \

 | awk '/\ keystone\ / {print $2}')

Assign the keystone user the admin role in service tenant

keystone user-role-add \

 --user $KEYSTONE_USER_ID \

 --role $ADMIN_ROLE_ID \

 --tenant_id $SERVICE_TENANT_ID

Get the cinder user id

CINDER_USER_ID=$(keystone user-list \

 | awk '/\ cinder \ / {print $2}')

Assign the cinder user the admin role in service tenant

keystone user-role-add \

 --user $CINDER_USER_ID \

 --role $ADMIN_ROLE_ID \

 --tenant_id $SERVICE_TENANT_ID

How it works...
Creation of the service tenant, populated with the services required to run OpenStack, is no
different from creating any other users on our system that require the admin role. We create
the usernames and passwords and ensure they exist in the service tenant with the admin
role assigned to each user. We then use these credentials when configuring the services to
authenticate with OpenStack Identity service.

2
Starting OpenStack

Image Service

In this chapter, we will cover:

ff Installing OpenStack Image Service

ff Configuring OpenStack Image Service with MySQL

ff Configuring OpenStack Image Service with OpenStack Identity Service

ff Managing images with OpenStack Image Service

ff Registering a remotely stored image

ff Sharing images among tenants

ff Viewing shared images

Introduction
OpenStack Image Service, known as Glance, is the service that allows you to register,
discover, and retrieve virtual machine images for use in our OpenStack environment. Images
made available through the OpenStack Image Service can be stored in a variety of backend
locations, from local filesystem storage to distributed filesystems such as OpenStack Storage.

Starting OpenStack Image Service

36

If you followed the steps in Chapter 1, Keystone OpenStack Identity Service, at the end of this
chapter we will have the following environment set up:

Installing OpenStack Image Service
Installation of latest OpenStack Image Service is simply achieved by using the packages
provided from the Ubuntu Cloud Archive repositories which have been packaged for our
Ubuntu 12.04 Linux installation.

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host—where OpenStack
Image Service will be installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

Ensure that our Ubuntu 12.04 LTS release is using the Ubuntu Cloud Archive that has the
packages required for the Grizzly release.

Chapter 2

37

How to do it...
Installation of OpenStack Image Service is very simple, using apt. We do this as follows:

sudo apt-get update

sudo apt-get -y install glance

To install just the client that allows us to administer and use OpenStack Image Service without
needing to log onto our server, we execute the following command:

sudo apt-get update

sudo apt-get -y install glance-client

How it works...
The Ubuntu Cloud Archive repositories have the latest supported version of OpenStack Image
Service for our environment that we can use.

There's more...
More information about the Ubuntu Cloud Archive can be found by visiting https://wiki.
ubuntu.com/ServerTeam/CloudArchive. This explains the release process and the
ability to use latest releases of OpenStack—where new versions are released every 6
months—on a long term supported release of Ubuntu that gets released every 2 years.

Using an alternative release
If you wish to optionally deviate from stable releases, it is appropriate when you are helping
develop or debug OpenStack, or require functionality that is not available in the current
release. To enable different releases, you add different Personal Package Archives (PPA)
to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs.
To use them, we first install a prerequisite tool that allows us to easily add PPAs to our system,
as follows:

sudo apt-get update

sudo apt-get -y install python-software-properties

To use a particular release of PPA, for example, Havana trunk testing, we issue the
following command:

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

Starting OpenStack Image Service

38

See also
ff Chapter 1, Keystone OpenStack Identity Service

Configuring OpenStack Image Service
with MySQL

By default, the OpenStack Image Service, Glance, is configured to use a local SQL database.
In order to scale effectively, we must configure our OpenStack Image Service to a central,
scalable, and more resilient database tier. For this, we will use our MySQL database.

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host—where OpenStack
Image Service has been installed.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

How to do it...
Carry out the following steps:

1.	 With OpenStack Image Service installed, we can now create the glance database in
our MySQL database server. We do this as follows:
MYSQL_ROOT_PASSWORD=openstack

mysql -uroot -p$MYSQL_ROOT_PASSWORD \

 -e 'CREATE DATABASE glance;'

2.	 We now create a glance user, with the password openstack and with privileges to
use this database, as follows:
MYSQL_GLANCE_PASSWORD=openstack

mysql -uroot -p${MYSQL_ROOT_PASSWORD} \

 -e "GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%'
IDENTIFIED BY '${MYSQL_GLANCE_PASSWORD}';"

mysql -uroot -p${MYSQL_ROOT_PASSWORD} \

 -e "GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost'
IDENTIFIED BY '${MYSQL_GLANCE_PASSWORD}';"

Chapter 2

39

3.	 We now configure the OpenStack Image Service to use this database by editing the /
etc/glance/glance-registry.conf and /etc/glance/glance-api.conf
files and change the sql_connection line to match the database credentials. We
do this as follows:
sudo sed -i "s,^sql_connection.*,sql_connection = \

 mysql://glance:${MYSQL_DB_PASSWORD}@172.16.0.200/glance," \

 /etc/glance/glance-{registry,api}.conf

4.	 We can now restart the glance-registry service, as follows:
sudo stop glance-registry

sudo start glance-registry

5.	 And the same for the glance-api service:
sudo stop glance-api

sudo start glance-api

6.	 The glance database is versioned controlled under Ubuntu 12.04 to allow upgrade
and downgrade of service. We first set the version control to be 0 by issuing the
following command:
glance-manage version_control 0

7.	 We now sync the database to ensure the correct table structure is present.
We do this by issuing the following command:

sudo glance-manage db_sync

How it works...
OpenStack Image Service is split into two running services—glance-api and glance-
registry—and it is the glance-registry service that connects to the database backend. The
first step is to create our glance database and glance user, so it can perform operations on
the glance database that we have created.

Once this is done, we modify the /etc/glance/glance-registry.conf and /etc/
glance/glance-registry.conf files so that glance knows where to find and connect
to our MySQL database. This is provided by the standard SQLAlchemy connection string that
has the following syntax:

sql_connection = mysql://USER:PASSWORD@HOST/DBNAME

Starting OpenStack Image Service

40

Configuring OpenStack Image Service with
OpenStack Identity Service

Configuring OpenStack Image Service to use OpenStack Identity Service is required to allow
our OpenStack Compute to operate correctly.

Getting Ready
To begin with, ensure you're logged in to our OpenStack Controller host or the host that is
running OpenStack Image Service.

To log on to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

How to do it...
To configure OpenStack Image Service to use OpenStack Identity Service, carry out the
following steps:

1.	 We first edit the /etc/glance/glance-api-paste.ini file and configure the
[filter:authtoken] section found at the bottom of this file, to match our glance
service user configured previously under Keystone:
[filter:authtoken]

paste.filter_factory = keystoneclient.middleware.auth_
token:filter_factory

admin_tenant_name = service

admin_user = glance

admin_password = glance

2.	 With the file saved, we add the following snippet at the bottom of the /etc/glance/
glance-api.conf file, to tell OpenStack Image Service to utilize OpenStack Identity
Service and the information in the glance-api-paste.ini file:
[keystone_authtoken]

auth_host = 172.16.0.200

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = glance

admin_password = glance

Chapter 2

41

[paste_deploy]

config_file = /etc/glance/glance-api-paste.ini

flavor = keystone

3.	 We repeat this process for the /etc/glance/glance-registry-paste.ini file,
configuring the glance service user in the [filter:authtoken] section:
[filter:authtoken]

paste.filter_factory = keystoneclient.middleware.auth_
token:filter_factory

admin_tenant_name = service

admin_user = glance

admin_password = glance

4.	 Then, we add the following to the corresponding /etc/glance/glance-
registry.conf file, to use this information and enable it to use OpenStack Identity
Service:
[keystone_authtoken]

auth_host = 172.16.0.200

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = glance

admin_password = glance

[paste_deploy]

config_file = /etc/glance/glance-registry-paste.ini

flavor = keystone

5.	 Finally, we restart the two OpenStack Image Service processes to pick up the
changes:

sudo restart glance-api

sudo restart glance-registry

How it works...
OpenStack Image Service runs two processes. These are the glance-api, which is the
service that our clients and services talk to, and the glance-registry process that
manages the objects on the disk and database registry. Both of these services need to
have matching credentials that were defined previously in OpenStack Identity Service in
their configuration files, in order for these services to allow a user to authenticate with the
service successfully.

Starting OpenStack Image Service

42

Managing images with OpenStack
Image Service

Uploading and managing images within OpenStack Storage is achieved using the glance
command-line tool. This tool allows us to upload, remove, and change information about the
stored images for use within our OpenStack environment.

Getting ready
To begin with, ensure you are either logged in to an Ubuntu client, where we can run the
glance tool or on our OpenStack Controller where OpenStack Image Service is running
directly. If the glance client isn't installed, this can be installed using the following commands:

sudo apt-get update

sudo apt-get -y install glance-client

Ensure that you have your environment variable set up correctly with our admin user and
password as created in the previous chapter as follows:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0/

export OS_NO_CACHE=1

How to do it...
We can upload and view images in our OpenStack Image Service in a number of ways. Carry
out the following steps to upload and show details of our uploaded images:

Uploading Ubuntu images
Ubuntu provide images that can easily be added to our OpenStack environment as follows:

1.	 First, we download an Ubuntu cloud image from http://uec-images.ubuntu.
com, as follows:
wget http://uec-images.ubuntu.com/precise/current/precise-server-
cloudimg-amd64-disk1.img

Chapter 2

43

2.	 We then upload our cloud image, as follows:

glance image-create \

 --name='Ubuntu 12.04 x86_64 Server' \

 --disk-format=qcow2 \

 --container-format=bare \

 --public < precise-server-cloudimg-amd64-disk1.img

You will see the output similar to the following:

Listing images
To list the images in our OpenStack Image Service repository, we use the glance client to
interrogate the Image Service directly, or using the Nova client that is used to manage our
OpenStack environment, which is covered in Chapter 3, Starting OpenStack Compute.

To list the images available to our user using the glance client, we issue the following
command:

glance image-list

This produces the following result:

Starting OpenStack Image Service

44

Viewing image details
We can view further details about our images in the repository. To show further details for any
image, issue the following snippet:

glance image-show IMAGE_ID

For example:

glance image-show 794dca52-5fcd-4216-ac8e-7655cdc88852

This returns the same details as when we uploaded our image, as shown on the
previous page.

Deleting images
There will be times when you will need to remove images from being able to be called
within your OpenStack cloud environment. You can delete images where you have
permission to do so:

1.	 To delete an image, issue the following command:
glance image-delete IMAGE_ID

For example:

glance image-delete 794dca52-5fcd-4216-ac8e-7655cdc88852

2.	 OpenStack Image Service will not produce any output when you successfully delete
an image. You can verify this with the glance image-list command.

Making private images public
When you upload an image, they get entered into OpenStack Image Service as private by
default. If an image is uploaded this way but you want to make it public, you do the following
in the OpenStack Image Service:

1.	 First, list and view the image(s) that you want to make public. In this case, we will
choose our first uploaded image:
glance image-show IMAGE_ID

For example:

glance image-show 2e696cf4-5167-4908-a769-356a51dc5728

Chapter 2

45

This produces results somewhat similar to the following:

2.	 We can now convert this to a public image, available to all users of our cloud
environment, with the following command:
glance image-update 2e696cf4-5167-4908-a769-356a51dc5728 \

 --is-public True

3.	 Issue a public glance listing as follows:

glance image-show 2e696cf4-5167-4908-a769-356a51dc5728

We will now see this:

Starting OpenStack Image Service

46

How it works
OpenStack Image Service is a very flexible system for managing images in our private
cloud environment. It allows us to modify many aspects of our OpenStack Image Service
registry, from adding new images, deleting them, and updating information, such as the
name that is used so that end users can easily identify them, to making private images
public and vice-versa.

To do all this, we use the glance tool from any connected client. To use the glance tool,
we source in our OpenStack Identity Service credentials.

Registering a remotely stored image
OpenStack Image Service provides a mechanism to remotely add an image that is stored at an
externally accessible location. This allows for a convenient method of adding images we might
want to use for our private cloud that have been uploaded to an external third-party server.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get -y install glance-client

Ensure that you have your environment variable set up correctly with our admin user and
password as created in the previous chapter as follows:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

Chapter 2

47

How to do it...
Carry out the following steps to remotely store an image into our OpenStack Image Service:

1.	 To register a remote virtual image into our environment, we add a location parameter
instead of streaming the image through a pipe on our glance command line:
glance image-create \

 --name='Ubuntu 12.04 x86_64 Server' \

 --disk-format=qcow2 \

 --container-format=bare \

 --public \

 --location http://webserver/precise-server-cloudimg-amd64-
disk1.img

2.	 This returns information similar to the following that is then stored in our OpenStack
Image Service:

How it works
Using the glance tool to specify remote images directly provides a quick and convenient way
to add images to our OpenStack Image Service repository. The way this happens is with the
location parameter. We add in our usual meta information to accompany this, as we would
with a locally specified image.

Starting OpenStack Image Service

48

Sharing images among tenants
When an image is private, that image is only available to the tenant to which that image was
uploaded. OpenStack Image Service provides a mechanism whereby these private images
can be shared between different tenants. This allows greater control over images that need to
exist for different tenants without making them public for all tenants.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get -y install glance-client

Ensure that you have your environment variable set up correctly with our admin user and
password as created in the previous chapter as follows:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0/

export OS_NO_CACHE=1

How to do it...
Carry out the following steps to share a private image in our cookbook tenant to
another tenant:

1.	 We first get the tenant ID of the tenant that is able to use our image. We do this as
follows:
keystone tenant-list

2.	 We then list our images as follows:
glance image-list

3.	 If we had a demo tenant with ID 04a1f9957fcb49229ccbc5af55ac9f76 and an
image with ID 2e696cf4-5167-4908-a769-356a51dc572, we would share the
image as follows:

glance member-create \

 2e696cf4-5167-4908-a769-356a51dc5728 \

 04a1f9957fcb49229ccbc5af55ac9f76

Chapter 2

49

How it works
The member-create option to the glance command allows us to share images with other
tenants. The syntax is as follows:

glance [--can-share] member-create image-id tenant-id

The command comes with an optional extra parameter, --can-share, that then gives
permission to that tenant to share the image.

Viewing shared images
We can view what images have been shared for a particular tenant when someone has used
the member-create option. This allows us to manage and control which users have what
type of access to images in our OpenStack environment.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get -y install glance-client

Ensure that you have your environment variable set up correctly with our admin user and
password as created in the previous chapter as follows:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0/

export OS_NO_CACHE=1

Starting OpenStack Image Service

50

How to do it...
Carry out the following steps to view images that have been shared for a particular tenant:

1.	 We first get the tenant ID of the tenant we want to view. We do this as follows:
keystone tenant-list

2.	 We can now list the images that have been shared with a tenant as follows:
glance member-list –-tenant-id \

 04a1f9957fcb49229ccbc5af55ac9f76

3.	 This produces output like the following:

How it works
The member-list option in the glance command allows us to view which images have
been shared with other tenants. The syntax is as follows:

glance member-list --image-id IMAGE_ID

glance member-list –-tenant-id TENANT_ID

3
Starting OpenStack

Compute

In this chapter, we will cover:

ff Installing OpenStack Compute Controller services

ff Creating a sandbox Compute server using VirtualBox and Vagrant

ff Installing OpenStack Compute packages

ff Configuring database services

ff Configuring OpenStack Compute

ff Configuring OpenStack Compute with OpenStack Identity Service

ff Stopping and starting Nova services

ff Installation of command-line tools

ff Checking OpenStack Compute services

ff Uploading a sample machine image

ff Managing security groups

ff Creating and managing keypairs

ff Launching your first Cloud instance

ff Terminating your instance

Starting OpenStack Compute

52

Introduction
OpenStack Compute, also known as Nova, is the compute component of the open source
Cloud operating system, OpenStack. It is the component that allows you to run multiple
instances of virtual machines on any number of hosts running the OpenStack Compute
service, allowing you to create a highly scalable and redundant Cloud environment. The open
source project strives to be hardware and hypervisor agnostic. OpenStack Compute powers
some of the biggest compute Clouds such as the Rackspace Open Cloud.

This chapter gets you to speed up quickly by giving you the information you need to provide
a Cloud environment running entirely from your desktop machine. At the end of this chapter,
you will be able to create and access virtual machines using the OpenStack tools. Our
environment will look like this at the end of this chapter:

We are using the default Nova Networking's VLAN Manager
in multi-host mode in this chapter and not the newer Neutron
Software Defined Networking.

Chapter 3

53

Installing OpenStack Compute Controller
services

Before we create a server for running OpenStack Compute services for running our instances,
there are some final services that need be installed on the Controller node where the
OpenStack Identity and Image services are running. Separating our Controller services from
the Compute nodes allows us to scale our OpenStack environment resources horizontally in
the Controller and Compute services.

To do this, we will install some further packages to our Controller node that we created in
Chapter 1, Keystone OpenStack Identity Services, and Chapter 2, Starting OpenStack Image
Service, currently running Keystone and Glance. The services are as follows:

ff nova-scheduler: The scheduler picks the server for fulfilling the request to run
the instance

ff nova-api: Service for making requests to OpenStack to operate the services within
it; for example, you make a call to this service to start up a new Nova instance

ff nova-conductor: A new service introduced in the Grizzly release to remove direct
database calls by the Compute service

ff nova-objectstore: File storage service

ff nova-common: Common Python libraries that underpin all of the OpenStack
environment

ff nova-cert: The Nova certificate management service, used for authentication
to Nova

ff ntp: Network Time Protocol is essential in a multi-node environment; the nodes
must have the same time (tolerance is within five seconds and outside of this you
get unpredictable results)

ff dnsmasq: DNS forwarder and DHCP service that allocates the addresses to your
instances in your environment

Getting ready
Ensure that you are logged in to the OpenStack Controller Node. If you used Vagrant to create
this as described in Chapter 1, Keystone OpenStack Identity Service, we can access this with
the following command:

vagrant ssh controller

Starting OpenStack Compute

54

How to do it...
Installation of OpenStack under Ubuntu 12.04 is simply achieved using the familiar
apt-get tool due to the OpenStack packages being available from the Ubuntu Cloud
Archive repositories:

1.	 We can install the required packages with the following command:
sudo apt-get update

sudo apt-get -y install rabbitmq-server nova-api \

 nova-conductor nova-scheduler nova-objectstore dnsmasq

2.	 Once the installation is complete, we need to install and configure NTP as follows:
sudo apt-get -y install ntp

3.	 NTP is important in any multi-node environment. In OpenStack environment it is a
requirement that server times are kept in sync. To do this we edit /etc/ntp.conf
with the following contents:
Replace ntp.ubuntu.com with an NTP server on
your network
server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10

4.	 Once NTP has been configured correctly we restart the service to pick up the change:

sudo service ntp restart

How it works...
Installation of OpenStack Compute controller packages from the Ubuntu Cloud Archive
package repository represents a very straightforward and well-understood way of getting the
latest OpenStack onto our Ubuntu server. This adds a greater level of certainty around stability
and upgrade paths by not deviating away from the main archives.

Chapter 3

55

Creating a sandbox Compute server with
VirtualBox and Vagrant

Creating a sandbox server for running the OpenStack Compute services is easy using
VirtualBox and Vagrant. VirtualBox gives us the ability to spin up virtual machines and
networks without affecting the rest of our working environment and is freely available from
http://www.virtualbox.org for Windows, Mac OSX, and Linux. Vagrant allows us to
automate this task, meaning we can spend less time creating our test environments and
more time using OpenStack. Vagrant is installable using Ubuntu's package management, but
for other operating systems, visit http://www.vagrantup.com/. This test environment can
then be used for the rest of this chapter.

It is assumed the computer you will be using to run your test environment in has enough
processing power that has hardware virtualization support (modern AMDs and Intel iX
processors) with at least 8 GB RAM. Remember we're creating a virtual machine that itself
will be used to spin up virtual machines, so the more RAM you have, the better.

Getting ready
To begin with, ensure that VirtualBox and Vagrant are installed and networking set up as
described in Chapter 1, Keystone OpenStack Identity Service.

How to do it...
To create our sandbox server for running OpenStack Compute within VirtualBox, we will use
Vagrant to define a second virtual machine that allows us to run OpenStack Cloud instances.
This virtual machine, that we will refer to as the OpenStack Compute node, will be configured
with at least 3 GB RAM, 2 CPUs, and 20 GB of hard drive space, and have three network
interfaces. The first will be a NAT interface that allows our virtual machine to connect to the
network outside of VirtualBox to download packages, the second interface which will be
the public interface of our OpenStack Compute host, and the third interface will be for our
private network that OpenStack Compute uses for internal communication between different
OpenStack Compute hosts.

Starting OpenStack Compute

56

Carry out the following steps to create the virtual machine with Vagrant that will be used to
run OpenStack Compute services:

1.	 Execute the steps mentioned in the Creating a sandbox environment with VirtualBox
recipe of Chapter 1, Keystone OpenStack Identity Service.

2.	 We now edit the Vagrant file we have been working with, thus far to look like the
following to add in our compute node:
-*- mode: ruby -*-
vi: set ft=ruby :

nodes = {
 'controller' => [1, 200],
 'compute' => [1, 201],
}

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
 config.vm.box_url
 ="http://files.vagrantup.com/precise64.box"

 nodes.each do |prefix, (count, ip_start)|
 count.times do |i|
 hostname = "%s" % [prefix, (i+1)]

 config.vm.define "#{hostname}" do |box|
 box.vm.hostname = "#{hostname}.book"
 box.vm.network :private_network, ip:
 "172.16.0.#{ip_start+i}", :netmask =>
 "255.255.0.0"
 box.vm.network :private_network, ip:
 "10.10.0.#{ip_start+i}", :netmask =>
 "255.255.0.0"

 # If using VirtualBox
 box.vm.provider :virtualbox do |vbox|
 vbox.customize ["modifyvm", :id,
 "--memory", 1024]
 if prefix == "compute"
 vbox.customize ["modifyvm", :id, "-
 -memory", 3172]
 vbox.customize ["modifyvm", :id, "-
 -cpus", 2]
 end
 end
 end
 end
 end
end

Chapter 3

57

3.	 We are now ready to power on our compute node. We do this by simply running the
following command:

vagrant up compute

Congratulations! We have successfully created the VirtualBox virtual
machine running Ubuntu 12.04, which is able to run OpenStack Compute.

How it works...
What we have done is created a virtual machine within VirtualBox by defining it in Vagrant.
Vagrant then configures this virtual machine, based on the settings given in Vagrantfile
in the directory where we want to store and run our VirtualBox virtual machines from.
This file is based on Ruby syntax, but the lines are relatively self-explanatory. We have
specified the following:

ff The hostname is called compute

ff The VM is based on Precise64, an alias for Ubuntu 12.04 LTS 64-Bit

ff We have specified 3GB Ram and two CPUs.

We then launch this VirtualBox VM using Vagrant with the help of the following
simple command:

vagrant up compute

There's more...
There are a number of virtualization products available that are suitable for trying OpenStack,
for example, VMware Server, VMware Player, and VMware Fusion are equally suitable.

See also
ff Chapter 11, Highly Available OpenStack

Starting OpenStack Compute

58

Installing OpenStack Compute packages
Now that we have a machine for running OpenStack Compute, we can install the appropriate
packages which will allow us to spawn its own virtual machine instances.

To do this, we will create a machine that runs all the appropriate services for running
OpenStack Nova. The services are as follows:

ff nova-compute: The main package for running the virtual machine instances.

ff nova-network: Network service that controls DHCP, DNS, and Routing. This will also
manage and run dnsmasq for us to provide these services.

ff nova-api-metadata: The Nova API metadata front-end. It is used when we are
running a multi-host Nova network in our environment so our compute instances can
download metadata.

ff nova-compute-qemu: Provides QEmu services on our compute host. It is only
required where hardware virtualization assist isn't available (as required to run
OpenStack under VirtualBox).

ff ntp: Network Time Protocol is essential in a multi-node environment that the nodes
have the same time (tolerance is within five seconds and outside of this you get
unpredictable results).

Getting ready
Ensure that you are logged in to the Openstack Compute node. We do this using
Vagrant as follows:

vagrant ssh compute

How to do it...
Installation of OpenStack under Ubuntu 12.04 is simply achieved using the familiar
apt-get tool due to the OpenStack packages being available from the Ubuntu Cloud
Archive repositories.

Refer to the recipe Configuring Ubuntu Cloud archive in Chapter 1,
Keystone OpenStack Identity Service, for instructions on setting up
the Ubuntu Cloud Archive repository on this server.

1.	 We can install the required packages with the following command:
sudo apt-get update

sudo apt-get -y install nova-compute nova-network \

 nova-api-metadata nova-compute-qemu

Chapter 3

59

2.	 Once the installation is complete, we need to install and configure NTP as follows:
sudo apt-get -y install ntp

3.	 NTP is important in any multi-node environment and in OpenStack environment it is
a requirement that server times are kept in sync. To do this we edit /etc/ntp.conf
with the following contents:
Replace ntp.ubuntu.com with an NTP server on your network
server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10

4.	 Once NTP has been configured correctly, we restart the service to pick up the change:

sudo service ntp restart

How it works...
Installation of OpenStack Compute from the Ubuntu Cloud Archive package repository
represents a very straightforward and well-understood way of getting the latest OpenStack
onto our Ubuntu server. This adds a greater level of certainty around stability and upgrade
paths by not deviating away from the main archives.

There's more...
There are various ways to install OpenStack, from source code building to installation from
packages, but this represents the easiest and most consistent method available. There are
also alternative releases of OpenStack available. By using the Ubuntu Cloud Archive we are
able to use various releases on our Ubuntu 12.04 LTS platform.

Using an alternative release
If you wish to optionally deviate from stable releases, it is appropriate when you are helping
develop or debug OpenStack, or require functionality that is not available in the current
release. To enable different releases, you add different Personal Package Archives (PPA)
to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs.
To use them, we first install a prerequisite tool that allows us to easily add PPAs to our system,
as follows:

sudo apt-get update

sudo apt-get -y install python-software-properties

To use a particular release of PPA, for example, Havana Trunk Testing, we issue the
following command:

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

sudo add-apt-repository ppa:openstack-ubuntu-testing/havana-trunk-testing

Starting OpenStack Compute

60

Configuring database services
OpenStack supports a number of database backends—an internal SQLite database (the
default), MySQL, and Postgres. SQLite is used only for testing and is not supported in a a
production environment, where choice of using MySQL or Postgres is down to experience of
the database staff. For the remainder of this book we shall use MySQL.

Setting up MySQL is easy and allows you to grow this environment as you progress through the
chapters of this book.

Getting ready
We will configure our OpenStack Controller services to use MySQL as the database backend,
so this needs to be installed prior to configuring our OpenStack Compute environment.

Refer to the recipe Installing OpenStack Identity Service
in Chapter 1, Keystone OpenStack Identity Service, for
instructions on setting up MySQL.

If you are not already on the OpenStack Controller, ssh into this using Vagrant as follows:

vagrant ssh controller

How to do it...
To use OpenStack Compute (Nova), we first need to ensure that our backend database has
the required nova database. To create this, follow the steps below on our controller host
running MySQL:

1.	 With MySQL running, we configure an appropriate database user, called nova,
and privileges for use by OpenStack Compute:
MYSQL_ROOT_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e 'CREATE DATABASE nova;'

MYSQL_NOVA_PASS=openstack

mysql -uroot -p${MYSQL_ROOT_PASSWORD} \

 -e "GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED BY
'${MYSQL_NOVA_PASSWORD}';"

mysql -uroot -p${MYSQL_ROOT_PASSWORD} \

 -e "GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost'
IDENTIFIED BY '${MYSQL_NLOVA_PASSWORD}';"

Chapter 3

61

2.	 We now simply reference our MySQL server in our /etc/nova/nova.conf file to
use MySQL by adding in the sql_connection flag:

sql_connection=mysql://nova:openstack@172.16.0.200/nova

How it works...
MySQL is an essential service to OpenStack as a number of services rely on it. Configuring
MySQL appropriately ensures your servers operate smoothly. We added in a database called
nova that will eventually be populated by tables and data from the OpenStack Compute
services and granted all privileges to the nova database user so that user can use it.

Finally, we configured our OpenStack Compute installation to specify these details so they can
use the nova database.

See also
ff The Using Galera for MySQL clustering recipe in Chapter 11, Highly

Available OpenStack

Configuring OpenStack Compute
The /etc/nova/nova.conf file is a very important file and is referred to many times in this
book. This file informs each OpenStack Compute service how to run and what to connect to in
order to present OpenStack to our end users. This file will be replicated amongst our nodes as
our environment grows.

The same /etc/nova/nova.conf file is used on all of
our OpenStack Compute service nodes. Create this once
and copy to all other nodes in our environment.

Getting ready
We will be configuring the /etc/nova/nova.conf file on both the Controller host and
Compute host.

To log on to our OpenStack Controller and Compute hosts that was created using Vagrant,
issue the following commands in separate shells:

vagrant ssh controller

vagrant ssh compute

Starting OpenStack Compute

62

How to do it...
To run our sandbox environment, we will configure OpenStack Compute so that it is accessible
from our underlying host computer. We will have the API service (the service our client tools
talk to) listen on our public interface and configure the rest of the services to run on the
correct ports. The complete nova.conf file as used by the sandbox environment is laid
out next and an explanation of each line (known as flags) follows. We will be configuring our
environment to use Nova Networking Service that predates Neutron but is still widely used:

1.	 First, we amend the /etc/nova/nova.conf file to have the following contents:
[DEFAULT]
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge
logdir=/var/log/nova
state_path=/var/lib/nova
lock_path=/var/lock/nova
root_helper=sudo nova-rootwrap /etc/nova/rootwrap.conf
verbose=True

api_paste_config=/etc/nova/api-paste.ini
enabled_apis=ec2,osapi_compute,metadata

Libvirt and Virtualization
libvirt_use_virtio_for_bridges=True
connection_type=libvirt
libvirt_type=qemu

Database
sql_connection=mysql://nova:openstack@172.16.0.200/nova

Messaging
rabbit_host=172.16.0.200

EC2 API Flags
ec2_host=172.16.0.200
ec2_dmz_host=172.16.0.200
ec2_private_dns_show_ip=True

Chapter 3

63

Networking
public_interface=eth1
force_dhcp_release=True
auto_assign_floating_ip=True

Images
image_service=nova.image.glance.GlanceImageService
glance_api_servers=172.16.0.200:9292

Scheduler
scheduler_default_filters=AllHostsFilter

Object Storage
iscsi_helper=tgtadm

Auth
auth_strategy=keystone

2.	 Repeat Step 1 and create the file /etc/nova/nova.conf on the Compute host.

3.	 Back on the Controller host, we then issue a command that ensures that the
database has the correct tables schema installed and initial data populated with the
right information:
sudo nova-manage db sync

There is no output when this command successfully runs.

4.	 We can then proceed to create the private network that will be used by our
OpenStack Compute instances internally:
sudo nova-manage network create privateNet \

 --fixed_range_v4=10.0.10.0/24 \

 --network_size=64 \

 --bridge_interface=eth2

5.	 As we have the flag set to auto-assign a floating IP address when we launch
an instance, we set a public network range that will be used by our OpenStack
Compute instances:

sudo nova-manage floating create --ip_range=172.16.10.0/24

Starting OpenStack Compute

64

How it works...
The /etc/nova/nova.conf file is an important file in our OpenStack Compute environment
and the same file is used on all Compute and Controller nodes. We create this once and then
we ensure this is present on all of our nodes. The following are the flags that are present in
our /etc/nova/nova.conf configuration file:

ff dhcpbridge_flagfile=: It is the location of the configuration (flag) file for the
dhcpbridge service.

ff dhcpbridge=: It is the location of the dhcpbridge service.

ff force_dhcp_release: It releases the DHCP assigned IP address when the
instance is terminated.

ff logdir=/var/log/nova: It writes all service logs here. This area will be written to
as root user.

ff state_path=/var/lib/nova: It is an area on your host that Nova will use to
maintain various states about the running service.

ff lock_path=/var/lock/nova: It is where Nova can write its lock files.

ff root_helper=sudo nova-rootwrap: It specifies a helper script to allow the
OpenStack Compute services to obtain root privileges.

ff verbose: It sets whether more information should be displayed in the logs or not.

ff api_paste_config: It is the the location of the paste file containing the paste.
deploy configuration for nova-api service.

ff connection_type=libvirt: It specifies the connection to use libvirt.

ff libvirt_use_virtio_for_bridges: It uses the virtio driver for bridges.

ff libvirt_type=qemu: It sets the virtualization mode. Qemu is software
virtualization, which is required for running under VirtualBox. Other options include
kvm and xen.

ff sql_connection=mysql://nova:openstack@172.16.0.200/nova:
It is our SQL connection line created in the previous section. It denotes the
user:password@HostAddress/database name (in our case nova).

ff rabbit_host=172.16.0.200: It tells OpenStack services where to find the
rabbitmq message queue service.

ff ec2_host=172.16.0.200: It denotes the external IP address of the nova-api
service.

ff ec2_dmz_host=172.16.0.200: It denotes the internal IP address of the nova-
api service.

ff ec2_private_dns_show_ip: It returns the IP address for the private hostname if
set to true, else returns the hostname if set to false.

Chapter 3

65

ff public_interface=eth1: It is the interface on your hosts running Nova that your
clients will use to access your instances.

ff force_dhcp_release: It releases the DHCP assigned private IP address on
instance termination.

ff auto_assign_floating_ip: It automatically assigns a floating IP address to
our instance on creation when this is set to true. A floating range must be defined
before booting an instance. This allows our instances to be accessible from our host
computer (that represents the rest of our network).

ff image_service=nova.image.glance.GlanceImageService: It specifies that
for this installation we'll be using Glance in order to manage our images.

ff glance_api_servers=172.16.0.200:9292: It specifies the server that is
running the Glance Imaging service.

ff scheduler_default_filters=AllHostsFilter: It specifies the scheduler can
send requests to all compute hosts.

ff iscsi_helper=tgtadm: It specifies that we are using the tgtadm daemon as our
iSCSI target user-land tool.

The networking is set up so that internally the guests are given an IP in the range
10.0.0.0/24. We specified that we would use only 64 addresses in this network range.
Be mindful of how many you want. It is easy to create a large range of address but it will also
take a longer time to create these in the database, as each address is a row in the nova.
fixed_ips table where these ultimately get recorded and updated. Creating a small range
now allows you to try OpenStack Compute and later on you can extend this range very easily.

There's more...
There are a wide variety of options that are available for configuring OpenStack Compute.
These will be explored in more detail in later chapters as the nova.conf file underpins most
of OpenStack Compute services.

Information online regarding flags
You can find a description of each flag at the OpenStack website: http://wiki.
openstack.org/NovaConfigOptions

Starting OpenStack Compute

66

Configuring OpenStack Compute with
OpenStack Identity Service

With OpenStack Identity Service (Keystone) installed and configured, we now need to tell our
OpenStack Compute Service (Nova) that it can be used to authenticate users and services.

The following steps are repeated on all Controller and
Compute hosts in our environment.

Getting ready
To begin with, ensure that you're logged in to our OpenStack Compute and Controller hosts.
If you did this through Vagrant, you can log in with the following commands in separate shells:

vagrant ssh controller

vagrant ssh compute

How to do it...
Configuring the authentication mechanism in our OpenStack Compute sandbox environment
is simply achieved with the following steps:

1.	 We first ensure that our OpenStack Compute host has the required python-keystone
package installed, if this host is a standalone Compute host, as follows:
sudo apt-get update

sudo apt-get -y install python-keystone

2.	 Configuration of the OpenStack Compute service to use the OpenStack Identity
Service is then done by filling in the [filter:authtoken] section of the /etc/
nova/api-paste.ini file with the details that we created for the Nova service
user in the recipe Creating the service tenant and service users, Chapter 1, Keystone
OpenStack Identity Service, as follows:
[filter:authtoken]

paste.filter_factory = keystone.middleware.auth_token:filter_
factory

service_protocol = http

service_host = 172.16.0.200

service_port = 5000

Chapter 3

67

auth_host = 172.16.0.200

auth_port = 35357

auth_protocol = http

auth_uri = http://172.16.0.200:5000/

admin_tenant_name = service

admin_user = nova

admin_password = nova

3.	 With the api-paste.ini file configured correctly, we edit /etc/nova/nova.conf
to inform it to use the paste file and set keystone as the authentication mechanism
by adding in the following lines under the [default] section:
api-paste_config=/etc/nova/api-paste.ini

keystone_ec2_url=http://172.16.0.200:5000/v2.0/ec2tokens

auth_strategy=keystone

4.	 With OpenStack Identity Service running, we can restart our OpenStack Compute
services to pick up this authentication change, as follows:

ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while read
S; do sudo stop $S; sudo start $S; done

How it works...
Configuration of OpenStack Compute to use OpenStack Identity Service is done on all hosts
in our environment running OpenStack Compute (Nova) services (for example, Controller and
Compute hosts). This first involves editing the /etc/nova/api-paste.ini file and filling in
the [filter:authtoken] part of the file with details of the nova service user we created in
the previous section.

We then configure the /etc/nova/nova.conf file, which is directed at this paste file, as
well as specify that the auth_strategy option is set to keystone.

Stopping and starting Nova services
Now that we have configured our OpenStack Compute installation, it's time to start our
services so that they're running on both of our OpenStack Compute virtual machines
(Controller and Compute), ready for us to launch our own private Cloud instances.

Starting OpenStack Compute

68

Getting ready
If you haven't done so already, ssh to our OpenStack Controller and OpenStack Compute
virtual machines. If you created these using Vagrant, you can log in to these using the
following commands in separate shells:

vagrant ssh controller

vagrant ssh compute

This ensures that we can access our virtual machines, as we will need access to spin up
instances from your personal computer.

The OpenStack services that we have running as part of our sandbox environments are
as follows:

Controller:

ff nova-api

ff nova-objectstore

ff nova-scheduler

ff nova-conductor

Compute:

ff nova-compute

ff nova-network

ff libvirt-bin

How to do it...
Carry out the following steps to stop the OpenStack Compute services we have running:

1.	 As part of the package installation, the OpenStack Compute services start up by
default so the first thing to do is to stop them by using the following commands:

(On the Controller node)

sudo stop nova-api

sudo stop nova-scheduler

sudo stop nova-objectstore

sudo stop nova-conductor

(On the Compute node)

sudo stop nova-compute

sudo stop nova-network

Chapter 3

69

To stop all of the OpenStack Compute services use the following command:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 |
while read S; do sudo stop $S; done

2.	 There is also the libvirt service we installed that is stopped in the same way:

sudo stop libvirt-bin

Carry out the following steps to start the OpenStack Compute services:

1.	 Starting the OpenStack Compute services are done in a similar way as we do to
stop them:

(On the Controller node)

sudo start nova-api

sudo start nova-scheduler

sudo start nova-objectstore

sudo start nova-conductor

(On the Compute node)

sudo start nova-compute

sudo start nova-network

To start all of the OpenStack Compute services use the following command:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 |
while read S; do sudo start $S; done

2.	 There is also the libvirt service we installed that is stopped in the same way:
sudo start libvirt-bin

How it works...
Stopping and starting OpenStack Compute services under Ubuntu are controlled using upstart
scripts. This allows us to simply control the running services by the start and stop commands
followed by the service we wish to control.

Installation of command-line tools
on Ubuntu

Management of OpenStack Compute from the command line is achieved by using the Nova
Client. The Nova Client tool uses the OpenStack Compute API and the OS-API. Understanding
this tool is invaluable in comparison with understanding the flexibility and power of Cloud
environments, not least allowing you to create powerful scripts to manage your Cloud.

Starting OpenStack Compute

70

Getting ready
The tools will be installed on your host computer if it's running Ubuntu or on a machine
running Ubuntu and it is assumed that you are running a version of Ubuntu, which is the
easiest way to get hold of the Nova Client packages ready to manage your Cloud environment.

How to do it...
The Nova Client packages are conveniently available from the Ubuntu repositories. If the host
PC isn't running Ubuntu, creating a Ubuntu virtual machine alongside our OpenStack Compute
virtual machine is a convenient way to get access to these tools.

As a normal user on our Ubuntu machine, type the following commands:

sudo apt-get update

sudo apt-get –y install python-novaclient

How it works...
Using Nova Client on Ubuntu is a very natural way of managing our OpenStack Cloud
environment. Installation is very straightforward as these are provided as part of standard
Ubuntu packaging.

Checking OpenStack Compute services
Now that we have OpenStack Compute installed, we need to ensure what we have
configured is what we expect. OpenStack Compute provides tools to check various parts
of our environment. We'll also use common system commands to check whether the
other underlying services that supprt our OpenStack Compute environment are running
as expected.

Getting ready
Log in to the OpenStack Controller node. If you used Vagrant to create this node, log in to this
using the following command:

vagrant ssh controller

Chapter 3

71

How to do it...
To check that the OpenStack Compute services are running, we invoke the nova-manage tool
and ask it various questions of the environment as follows:

ff To check the OpenStack Compute hosts are running OK:
sudo nova-manage service list

You will see the following output. The :-) icons are indicative that everything is fine.

ff If Nova has a problem:

If you see XXX where the :-) icon should be, then you have a problem.

Troubleshooting is covered at the end of the book, but if you do see XXX then the
answer will be in the logs at /var/log/nova/.

If you get intermittent XXX and :-) icons for a service,
first check if the clocks are in sync.

ff Checking Glance:

Glance doesn't have a tool to check, so we can use some system commands instead:

ps -ef | grep glance

netstat -ant | grep 9292.*LISTEN

These should return process information for Glance to show it is running and 9292 is
the default port that should be open in the LISTEN mode on your server ready
for use.

ff Other services that you should check:

�� rabbitmq:
sudo rabbitmqctl status

Starting OpenStack Compute

72

The following is an example output from rabbitmqctl, when everything is
running OK:

�� ntp (Network Time Protocol, for keeping nodes in sync):
ntpq -p

It should return output regarding contacting NTP servers, for example:

�� MySQL Database Server:

MYSQL_ROOT_PASS=openstack
mysqladmin -uroot –p$MYSQL_ROOT_PASS status

This will return some statistics about MySQL if it is running:

Chapter 3

73

How it works...
We have used some basic commands that communicate with OpenStack Compute and other
services to show they are running. This elementary level of troubleshooting ensures you have
the system running as expected.

Using OpenStack Compute
OpenStack Identity Service underpins all of the OpenStack services. With OpenStack
Image Service configured to also use OpenStack Identity Service, the OpenStack Compute
environment can now be used.

Getting ready
To begin with, log in to an Ubuntu client and ensure that Nova Client is available.
If it isn't, it can be installed as follows:

sudo apt-get update

sudo apt-get -y python-novaclient

How to do it...
To use OpenStack Identity Service as the authentication mechanism in our OpenStack
environment, we need to set our environment variables accordingly. This is achieved as
follows, for our demo user:

1.	 With the Nova Client installed, we use them by configuring our environment with the
appropriate environment variables. We do this as follows:
export OS_TENANT_NAME=cookbook

export OS_USERNAME=demo

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

Add these to a file called novarc in your home area. We can then source these
credentials in, each time by simply executing:
. novarc

Note that if the user credential environment variables have been set in a
shell that has the SERVICE_TOKEN and SERVICE_ENDPOINT environment
variables, these will override our user credentials set in this step. Unset the
SERVICE_TOKEN and SERVICE_ENDPOINT variables before continuing.

Starting OpenStack Compute

74

2.	 To access any Linux instances that we launch, we must create a keypair that
allows us to access our Cloud instance. Keypairs are SSH private and public key
combinations that together allow you to access a resource. You keep the private
portion safe, but you're able to give the public key to anyone or any computer without
fear or compromise to your security, but only your private portion will match enabling
you to be authorized. Cloud instances rely on keypairs for access. We create a keypair
using Nova Client with the following commands:
nova keypair-add demo > demo.pem

chmod 0600 *.pem

3.	 We can test that this is successful by issuing some nova commands, for example:

nova list

nova credentials

How it works...
Configuring our environment to use OpenStack Identity Service for authentication for Nova
Client so that we can launch our instances involves manually creating an environment
resource file with the appropriate environment variables in.

Our environment passes on our username, password, and tenant to OpenStack Identity
Service for authentication and passes back, behind the scenes, an appropriate token, which
validates our user. This then allows us to seamlessly spin up instances within our tenancy
(project) of cookbook.

Managing security groups
Security groups are firewalls for your instances, and they're mandatory in our cloud
environment. The firewall actually exists on our OpenStack Compute host that is running the
instance and not as iptable rules within the running instance itself. They allow us to protect
our hosts by restricting or allowing access to specified service ports and also protect our
instances from other users' instances running on the same hosts. Security groups are the only
way to separate a tenant's instances from another user's instances in another tenant when
running under the Flat network modes and where VLAN or tunnel separation isn't available.

Getting ready
To begin with, ensure that you're logged in to a client that has access to the Nova Client tools.
These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get –y install python-novaclient

Chapter 3

75

And ensure you have set the following credentials set:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

How to do it...
The following sections describe how to create and modify security groups in our
OpenStack environment.

Creating security groups
Recall that we have already created a default security group that opened TCP port 22 from
anywhere and allowed us to ping our instances. To open another port, we simply run our
command again, assigning that port to a particular group.

For example, to open TCP port 80 and port 443 on our instances using Nova Client, grouping
that under a security group called webserver we can do the following:

nova secgroup-create webserver "Web Server Access"

nova secgroup-add-rule webserver tcp 80 80 0.0.0.0/0

nova secgroup-add-rule webserver tcp 443 443 0.0.0.0/0

The reason we specified a new group, rather than assigning these to the default group, is that
we might not want to open up our web server to everyone, which would happen every time we
spin up a new instance. Putting it into its own security group allows us to open up access to
our instance to port 80 by simply specifying this security group when we launch an instance.

For example, we specify the --security_groups option when we boot an instance:

nova boot myInstance \

 --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4

 --flavor 2 \

 --key_name demo \

 --security_groups default,webserver

Removing a rule from a security group
To remove a rule from a security group, we run the nova secgroup-delete command. For
example, suppose we want to remove the HTTPS rule from our webserver group. To do this
using Nova Client, we run the following command:

nova secgroup-delete-rule webserver tcp 443 443 0.0.0.0/0

Starting OpenStack Compute

76

Deleting a security group
To delete a security group, for example webserver, we run the following command:

nova secgroup-delete webserver

How it works...
Creation of a security group is done in two steps as follows:

1.	 The first is that we add a group using the nova secgroup-create command.

2.	 Following the creation of a security group, we can define rules in that group using
the nova secgroup-add-rule command. With this command, we can specify
destination ports that we can open up on our instances and the networks that are
allowed access.

Defining groups and rules using Nova Client
The nova secgroup-create command has the following syntax:

nova secgroup-create group_name "description"

The nova secgroup-add-rule command has the following basic syntax:

nova secgroup-add-rule group_name protocol port_from port_to source

Removing rules from a security group is done using the nova secgroup-delete-rule
command and is analogous to the nova secgroup-add-rule command. Removing a
security group altogether is done using the nova secgroup-delete command and is
analogous to the nova secgroup-create command.

Creating and managing keypairs
Keypairs refers to SSH keypairs and consist of two elements—a public key and a private key.
Keypairs are used for access to our Linux hosts via SSH. The public portion of our keypair is
injected into our instance at boot-time through a service known as cloud-init. Cloud-init can
perform many tasks, one of which is managing this public keypair injection. Only this specific
combination of the public and private key will allow us access to our instances.

Getting ready
To begin with, ensure that you are logged in to your Ubuntu client that has access to the Nova
Client tools. This can be installed using the following commands:

sudo apt-get update

sudo apt-get –y install python-novaclient

Chapter 3

77

And ensure you have set the following credentials set:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

How to do it...
To create a keypair, we use the nova keypair-add command. We name the key
accordingly, which we will subsequently refer to when launching instances. The output of the
command is the SSH private key that we will use to access a shell on our instance:

1.	 First create the keypair as follows:
nova keypair-add myKey > myKey.pem

2.	 We must then protect the private key output so that only our logged in user account
can read it:

chmod 0600 myKey.pem

This command has generated a keypair and stored the public portion within our database, at
the heart of our OpenStack environment. The private portion has been written to a file on our
client, which we then protect by making sure that only our user can access this file.

When we want to use this new key under Nova Client, this looks as follows, using the nova
boot command:
nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4
 --flavor 2 --key_name myKey

And when we want to SSH to this running instance, we specify the private key on the SSH
command line with the -i option:
ssh ubuntu@172.16.1.1 -i myKey.pem

As with most things in Unix, the values and files specified are case-sensitive.

Listing and deleting keypairs using Nova Client
To list and delete keypairs using Nova Client, carry out the set of commands in the
following sections:

Starting OpenStack Compute

78

Listing the keypairs
To list the keypairs in our project using Nova Client, we simply run the nova keypair-list
command, as follows:

nova keypair-list

This brings back a list of keypairs in our project, such as the following:

Deleting the keypairs
To delete a keypair from our project, we simply specify the name of the key as an option to the
nova keypair-delete tool:

ff To delete the myKey keypair, we do the following:
nova keypair-delete myKey

ff We can verify this by listing the keys available, thus:
nova keypair-list

Deleting keypairs is an irreversible action. Deleting a keypair to a
running instance will prevent you from accessing that instance.

How it works...
Keypairs are important in our cloud environment as most Linux images don't allow access
 to a command line prompt using usernames and passwords. An exception to this is the
Cirros image which comes with a default username cirros and password cubswin:).
The Cirros image is a cut down image that is used for troubleshooting and testing OpenStack
environments. Images like Ubuntu only allow access using keypairs.

Creation of a keypair allows us SSH access to our instance and it is carried out using the nova
keypair-add command. This stores the public key in our backend database store that will
be injected into the .ssh/authorized_keys file on our Cloud instance, as a part of the
cloud instance's boot/cloud init script. We can then use the private key that gets generated to
access the system by specifying this on the ssh command line with the -i option.

We can, of course, also remove keys from our project, and we do this to prevent further
access by that particular keypair. The command nova keypair-delete does this for
us, and we can verify what keys are available to us in our project by running the nova
keypair-list commands.

Chapter 3

79

Launching our first Cloud instance
Now that we have a running OpenStack Compute environment and a machine image to
use, it's now time to spin up our first cloud instance! This section explains how to use the
information from the nova image-list commands to reference this on the command line
to launch the instance that we want.

Getting ready
These steps are to be carried out on our Ubuntu machine under the user that has access to
our OpenStack Compute credentials (as created in the Installation of command-line tools on
Ubuntu recipe).

Before we spin up our first instance, we must create the default security settings that define
the access rights. We do this only once (or when we need to adjust these) using the nova
secgroup-add-rule command under Nova client. The following set of commands gives us
SSH access (Port 22) from any IP address and also allows us to ping the instance to help with
troubleshooting. Note the default group and its rules are always applied if no security group is
mentioned on the command line.

1.	 With the Nova client installed, we use them by configuring our environment with the
appropriate environment variables. We do this as follows:
export OS_TENANT_NAME=cookbook

export OS_USERNAME=demo

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

Add these to a file called novarc in your home area. We can then
source these credentials in each time by simply executing . novarc.

2.	 Using Nova Client, we can simply add the appropriate rules using the
following commands:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

If there are no images available yet, follow the steps of the recipe Managing images with
OpenStack Image Service in Chapter 2, Starting OpenStack Image Service.

Starting OpenStack Compute

80

How to do it...
To launch our first instance, now that our environment is set up correctly, we carry out the
following set of commands:

1.	 We first list the images available by executing the following command:
nova image-list

This should produce output like the following screenshot:

2.	 To launch our instance, we need this information and we specify this on the
command line. For launching an instance using Nova client tools, we issue the
following, using the UUID of our image that is named Ubuntu 12.04 x86_64
Server:
nova boot myInstance \

 --image 1d8f15b2-ddd8-4816-8610-486bf8fd0eb8 \

 --flavor 2 \

 --key_name demo

3.	 You should see output like the following screenshot when you launch an instance:

Chapter 3

81

4.	 This will take a few brief moments to spin up. To check the status of your instances,
issue the following commands:
nova list

nova show 67438c9f-4733-4fa5-92fc-7f6712da4fc5

5.	 This brings back output similar to the output of the previous command lines, yet this
time it has created the instance and it is now running and has IP addresses assigned
to it:

6.	 After a short while, you will be able to connect to this instance from our host or client
where we launched our instance from, using SSH, and specifying your private key to
gain access:

ssh -i demo.pem ubuntu@172.16.10.1

The default user that ships with the Ubuntu cloud images is ubuntu.

Congratulations! We have successfully launched and connected to our first OpenStack
Cloud instance.

How it works...
After creating the default security settings, we made a note of our machine image identifier,
UUID value, and then called a tool from Nova Client to launch our instance. Part of that
command line refers to the keypair to use. We then connect to the instance using the private
key as part of that keypair generated.

How does the cloud instance know what key to use? As part of the boot scripts for this image,
it makes a call back to the meta-server which is a function of the nova-api and nova-
api-metadata services. The meta-server provides a go-between that bridges our instance
and the real world that the Cloud init boot process can call and in this case, it downloads a
script to inject our private key into the Ubuntu user's .ssh/authorized_keys file. We can
modify what scripts are called during this boot process, which is covered later on.

When a cloud instance is launched, it generates a number of useful metrics and details about
that instance. This is presented by the nova list and nova show commands. The nova list
command shows a convenient short version listing the ID, name, status, and IP addresses of
our instance.

Starting OpenStack Compute

82

The type of instance we chose was specified as an ID of 2 when using the nova boot
command. The instance types supported can be listed by running the following command:

nova flavor-list

These flavors (specification of instances) are summarized as follows:

Type of instance Memory VCPUS Storage Version
m1.tiny 512 MB 1 0 GB 32 and 64-bit
m1.small 2048 MB 1 20 GB 32 and 64-bit
m1.medium 4096 MB 2 40 GB 64-bit only
m1.large 8192 MB 4 80 GB 64-bit only
m1.xlarge 16384 MB 8 160 GB 64-bit only

Terminating your instance
Cloud environments are designed to be dynamic and this implies that Cloud instances are
being spun up and terminated as required. Terminating a cloud instance is easy to do, but
equally, it is important to understand some basic concepts of cloud instances.

Cloud instances such as the instance we have used are not persistent. This means that the
data and work you do on that instance only exists for the time that it is running. A Cloud
instance can be rebooted, but once it has been terminated, all data is lost.

To ensure no loss of data, an OpenStack Compute service named
nova-volume provides persistent data store functionality that allows
you to attach a volume to it that doesn't get destroyed on termination
but allows you to attach it to running instances. A volume is like a
USB drive attached to your instance.

Chapter 3

83

How to do it...
From our Ubuntu machine, list the running instances to identify the instance you want
to terminate:

1.	 We first identify the instance that we want to terminate by issuing the following
command from our client:
nova list

2.	 To terminate an instance, we can either specify the name of our instance or use
the UUID:

nova delete myInstance

nova delete 6f41bb91-0f4f-41e5-90c3-7ee1f9c39e5a

You can re-run nova list again to ensure your instance is terminated.

How it works...
We simply identify the instance we wish to terminate by its UUID or by name when using nova
list. Once identified, we can specify this as the instance to terminate using nova delete.
Once terminated, that instance no longer exists—it has been destroyed. So if you had any data
in there it will have been deleted along with the instance.

4
Installing OpenStack

Object Storage

In this chapter, we will cover:

ff Creating an OpenStack Storage sandbox environment

ff Installing OpenStack Object Storage

ff Configuring storage

ff Configuring replication

ff Configuring OpenStack Object Storage Service

ff Configuring OpenStack Object Storage proxy server

ff Configuring Account Server

ff Configuring Container Server

ff Configuring Object Server

ff Making rings

ff Stopping and starting OpenStack Object Storage

ff Configuring OpenStack Object Storage with OpenStack Identity Service

ff Setting up SSL access

ff Testing OpenStack Object Storage

Installing OpenStack Object Storage

86

Introduction
OpenStack Object Storage, also known as Swift, is the service that allows for massively
scalable and highly redundant storage on commodity hardware. This service is analogous
to Amazon's S3 storage service and is managed in a similar way under OpenStack. With
OpenStack Storage, we can store many objects of virtually unlimited size—restricted by the
available hardware—and grow our environment as needed, to accommodate our storage.
The highly redundant nature of OpenStack Object Storage is ideal for archiving data (such
as logs) as well as providing a storage system that OpenStack Compute can use for virtual
machine instance templates.

In this chapter, we will set up a single virtual machine that will represent a multi-node test
environment for OpenStack Object Storage. Although we are operating on a single host, the
steps involved mimic a four-device setup, so we see a lot of duplication and replication of our
configuration files.

Creating an OpenStack Object Storage
sandbox environment

Creating a sandbox environment using VirtualBox and Vagrant allows us to discover and
experiment with the OpenStack Compute service. VirtualBox gives us the ability to spin up
virtual machines and networks without affecting the rest of our working environment and is
freely available from http://www.virtualbox.org for Windows, Mac OSX, and Linux.
Vagrant allows us to automate this task, meaning we can spend less time creating our test
environments and more time using OpenStack. Vagrant is installable using Ubuntu's package
management, but for other operating systems, visit http://www.vagrantup.com/. This
test environment can then be used for the rest of this chapter.

It is assumed the computer you will be using to run your test environment in has enough
processing power, with hardware virtualization support (modern AMDs and Intel iX processors)
and at least 8 GB of RAM. The virtual machine we will be creating will have all components
installed to get you familiar with the OpenStack Object Storage services.

In this section, we will use Vagrant to create an additional virtual machine. This new virtual
machine will mimic a four node OpenStack Object Storage environment. To provide identity
services, we will use the existing keystone installation as built in Chapter 1, Keystone
OpenStack Identity Service.

Chapter 4

87

Getting ready
Before beginning this section it is assumed that you have completed all recipes from Chapter
1, Keystone OpenStack Identity Service.

How to do it...
To create our sandbox environment within VirtualBox we will use Vagrant to define an
additional virtual machine with three network interfaces. The first will be a NAT interface
that allows our virtual machine to connect to the network outside of VirtualBox to download
packages, a second interface which will be the Public interface of our OpenStack Compute
host, and the third interface will be for our Private network that OpenStack Compute uses
for internal communication between different OpenStack Compute hosts. This swift virtual
machine will be configured with at least 1 GB RAM, and two 20 GB hard disks.

Carry out the following steps to create the virtual machine with Vagrant that will be used to
run OpenStack Storage services:

1.	 Execute the steps mentioned in the Creating a sandbox environment with VirtualBox
recipe of Chapter 1, Keystone OpenStack Identity Service.

2.	 We now edit the Vagrant file we have been working with thus far to look like the
following:
-*- mode: ruby -*-
vi: set ft=ruby :

nodes = {
 'controller' => [1, 200],
 'compute'	=> [1, 201],
 'swift' => [1, 210],
}

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
 config.vm.box_url = "http://files.vagrantup.com/precise64.box"
 # If using Fusion uncomment the following line
 #config.vm.box_url = "http://files.vagrantup.com/precise64_
vmware.box"

 nodes.each do |prefix, (count, ip_start)|
 count.times do |i|
 hostname = "%s" % [prefix, (i+1)]

Installing OpenStack Object Storage

88

 config.vm.define "#{hostname}" do |box|
 box.vm.hostname = "#{hostname}.book"
 box.vm.network :private_network, ip:
"172.16.0.#{ip_start+i}", :netmask => "255.255.0.0"
 box.vm.network :private_network, ip:
"10.10.0.#{ip_start+i}", :netmask => "255.255.0.0"

 # If using Fusion
 box.vm.provider :vmware_fusion do |v|
 v.vmx["memsize"] = 1024
 end
 # Otherwise using VirtualBox
 box.vm.provider :virtualbox do |vbox|
 vbox.customize ["modifyvm", :id,
 "--memory", 1024]
if prefix == "swift"
 vbox.customize ["modifyvm",
 :id, "--memory", 1024]
 vbox.customize ["modifyvm",
 :id, "--cpus", 1]
 vbox.customize ["createhd",
 "--filename", 'swift_disk2.vdi',
 "--size", 2000 * 1024]
 vbox.customize ['storageattach',
 :id, '--storagectl',
 'SATA Controller', '--port', 1,
 '--device', 0, '--type', 'hdd',
 '--medium', 'swift_disk2.vdi']
 end
 end
 end
 end
 end
end

3.	 We are now ready to power on both nodes in this configuration by issuing the
following command:

vagrant up

Congratulations! We have successfully created the
VirtualBox virtual machine running Ubuntu, which is
able to run OpenStack Storage.

Chapter 4

89

How it works...
What we have done is created a virtual machine that will become the basis of our OpenStack
Storage host. It has the necessary disk space and networking in place to allow you to access
this virtual machine from your host personal computer and any other virtual machines in our
OpenStack sandbox environment.

There's more...
You'll notice in the preceding Vagrant file example that we have also provided for a VMware
Fusion configuration. Additionally, there are other virtualization products that can work outside
of the Vagrant environment.

Installing OpenStack Object Storage
Now that we have a machine to run our OpenStack Object Storage service, we can install the
packages required to run this service.

To do this, we will create a machine that runs all the appropriate services for running
OpenStack Object Storage:

ff swift: The underlying common files shared amongst other OpenStack Object
Storage packages, including the swift client

ff swift-proxy: The proxy service that the clients connect to, that sits in front of the
many swift nodes that can be configured

ff swift-account: The account service for accessing OpenStack Storage

ff swift-object: The package responsible for object storage and orchestration of
rsync

ff swift-container: The package for the OpenStack Object Storage Container Server

ff memcached: A high-performance memory object caching system

ff ntp: Network Time Protocol is essential in a multi-node environment so that the
nodes have the same time (tolerance is up to five seconds, and outside of this you
get unpredictable results)

ff xfsprogs: The underlying filesystem is XFS in our OpenStack Object
Storage installation

ff curl: Command-line web interface tool

Installing OpenStack Object Storage

90

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
Installation of OpenStack in Ubuntu 12.04 is simply achieved using the familiar apt-get tool
due to the OpenStack packages available from the official Ubuntu repositories. To ensure you
are installing the Grizzly release of OpenStack, follow the Configuring Ubuntu Cloud archive
Recipe from Chapter 1, Keystone OpenStack Identity Service.

1.	 We can install the OpenStack Object Storage packages as follows:
sudo apt-get update

sudo apt-get install -y swift swift-proxy swift-account
 swift-container swift-object memcached xfsprogs curl python-
webob ntp parted

2.	 NTP is important in any multi-node environment, while in OpenStack environment it
is a requirement for server times to be kept in sync. Although we are configuring only
one node, not only will accurate time-keeping help with troubleshooting, but it will
also allow us to grow our environment as needed in the future. To do this, we edit /
etc/ntp.conf, with the following contents:
Replace ntp.ubuntu.com with an NTP server on your network

server ntp.ubuntu.com

server 127.127.1.0

fudge 127.127.1.0 stratum 10

3.	 Once ntp has been configured correctly, we restart the service to pick up the change:
sudo service ntp restart

How it works...
Installation of OpenStack Storage from the main Ubuntu package repository represents a
very straightforward and well-understood way of getting OpenStack onto our Ubuntu server.
This adds a greater level of certainty around stability and upgrade paths by not deviating away
from the main archives.

Chapter 4

91

Configuring storage
Now that we have our Openstack Object Storage services installed, we can configure our
extra disk, which will form our object storage. As OpenStack Object Storage is designed to be
highly scalable and highly redundant, it is usually installed across multiple nodes. Our test
environment will consist of only one node, but OpenStack Object Storage still expects multiple
destinations on our storage to replicate its data to, so we need to configure this appropriately
for our test setup.

We will end up with four directories on our OpenStack Object Storage server specified as
/srv/1-4, which point to directories on our new disk. The result is an OpenStack Object
Storage setup that looks like it has four other OpenStack Object Storage nodes to replicate
data to.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
To configure our OpenStack Object Storage host, carry out the following steps:

If you are using VMware Fusion, you will need to power the
virtual machine down and add a second disk by hand.

1.	 We first create a new partition on our extra disk. This extra disk is seen as /dev/sdb,
under our Linux installation.
sudo fdisk /dev/sdb

2.	 Once in fdisk, use the following key presses to create a new partition:
n

p

1

enter

enter

w

Installing OpenStack Object Storage

92

It should look like this once finished with the above key presses:

vagrant@swift:~$ sudo fdisk /dev/sdb

Command (m for help): p

Disk /dev/sdb: 2147.5 GB, 2147483648000 bytes

89 heads, 61 sectors/track, 772573 cylinders, total 4194304000
sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x1948d96f

 Device Boot Start End Blocks Id System

/dev/sdb1 2048 4194303999 2097150976 83 Linux

3.	 To get Linux to see this new partition without rebooting, run partprobe to reread the
disk layout.
sudo partprobe

4.	 Once completed, we can create our filesystem. For this, we will use the XFS
filesystem, as follows:
sudo mkfs.xfs -i size=1024 /dev/sdb1

5.	 We can now create the required mount point and set up fstab to allow us to mount
this new area, as follows:
sudo mkdir /mnt/sdb1

6.	 Then, edit /etc/fstab to add in the following contents:
/dev/sdb1 /mnt/sdb1 xfs
 noatime,nodiratime,nobarrier,logbufs=8 0 0

7.	 We can now mount this area, as follows:
sudo mount /dev/sdb1

Chapter 4

93

8.	 Once done, we can create the required file structure, as follows:
sudo mkdir /mnt/sdb1/{1..4}

sudo chown swift:swift /mnt/sdb1/*

sudo ln -s /mnt/sdb1/{1..4} /srv

sudo mkdir -p /etc/swift/{object-server,container-
 server,account-server}

for S in {1..4}; do sudo mkdir -p /srv/${S}/node/sdb${S};
 done

sudo mkdir -p /var/run/swift

sudo chown -R swift:swift /etc/swift /srv/{1..4}/

9.	 To ensure OpenStack Storage can always start on boot, add the following commands
to /etc/rc.local, before the line exit 0:

mkdir -p /var/run/swift
chown swift:swift /var/run/swift

How it works...
We first created a new partition on our extra disk and formatted this with the XFS filesystem.
XFS is very good at handling large objects and has the necessary extended attributes (xattr)
required for the objects in this filesystem.

Once created, we mounted this area, and then began to create the directory structure.
The commands to create the directories and required symbolic links included a lot of bash
shorthand, such as {1..4}. This shorthand essentially prints out 1 2 3 4 when expanded,
but repeats the preceding attached text when it does so. Take for example the following piece
of code:

mkdir /mnt/sdb1/{1..4}

It is the equivalent of:

mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4

The effect of that short piece of code is the following directory structure:

/etc/swift
 /object-server
 /container-server
 /account-server

Installing OpenStack Object Storage

94

/mnt/sdb1
 /1 /srv/1
 /2 /srv/2
 /3 /srv/3
 /4 /srv/4
/srv/1/node/sdb1
/srv/2/node/sdb2
/srv/3/node/sdb3
/srv/4/node/sdb4
/var/run/swift

What we have done is set up a filesystem that we will configure to replicate data into the
different device directories to mimic the actions and features OpenStack Object Storage
requires. In production, these device directories would actually be physical servers and
physical devices on the servers and won't necessarily have this directory structure, rather
what we have built simulates this to demonstrate a working swift environment.

Configuring replication
As required by a highly redundant and scalable object storage system, replication is a key
requirement. The reason we went to great lengths to create multiple directories—named in a
particular way as to mimic actual devices—is that we want to set up replication between these
"devices" using rsync.

Rsync is responsible for performing the replication of the objects stored in our OpenStack
Object Storage environment.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

Chapter 4

95

How to do it...
Configuring replication in OpenStack Object Storage means configuring the Rsync service.
The following steps set up synchronization modules configured to represent the different ports
that we will eventually configure our OpenStack Object Storage service to run on. As we're
configuring a single server, we use different paths and different ports to mimic the multiple
servers that would normally be involved. If you look closely at the names and ports assigned
below, you can begin to get a picture of what we are building. As you continue in this chapter,
each of these additional names and ports will be used over and over again.

1.	 We first create our /etc/rsyncd.conf file in its entirety, as follows:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 127.0.0.1

[account6012]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6012.lock

[account6022]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6022.lock

[account6032]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6032.lock

[account6042]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6042.lock

Installing OpenStack Object Storage

96

[container6011]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6011.lock

[container6021]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6021.lock

[container6031]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6031.lock

[container6041]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6041.lock

[object6010]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6010.lock

[object6020]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6020.lock

[object6030]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6030.lock

Chapter 4

97

[object6040]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6040.lock

2.	 Once complete, we enable rsync and start the service, as follows:

sudo sed -i 's/=false/=true/' /etc/default/rsync

sudo service rsync start

How it works...
The vast majority of this section was configuring rsyncd.conf appropriately. What we have
done is configure various rsync modules that become targets on our rsync server.

For example, the object6020 module would be accessible using the following command:

rsync localhost::object6020

It would have the contents of /srv/node/3/ in it.

Additionally, each section of the rsyncd.conf file has a number of configuration directives
such as max connections, read only, and lock file. While most of these values should be
self-explanatory, it is important to pay attention to the max connections value. In our test
environment, this is set to not overwhelm the small server we are running swift on. In the
real world you will want to tune the max connections value per guidance provided in the
rsync documentation. A full discussion of this, however, is beyond the scope of the book.

Configuring OpenStack Object
Storage Service

Configuring our OpenStack Storage environment is quick and simple, as it involves just
adding in a uniquely generated random alphanumeric string to the /etc/swift/swift.
conf file. This random string will be included in all nodes as we scale out our environment,
so keep it safe.

Installing OpenStack Object Storage

98

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
Configuring the main OpenStack Object Storage configuration file for our sandbox environment
is simply done with the following steps:

1.	 First, we generate our random string, as follows:
< /dev/urandom tr -dc A-Za-z0-9_ | head -c16; echo

2.	 We then create the /etc/swift/swift.conf file, adding in the following contents,
including our generated random string:

[swift-hash]
 # Random unique string used on all nodes
 swift_hash_path_suffix = thestringyougenerated

How it works...
We first generated a random string by outputting characters from the /dev/urandom device.
We then added this string to our swift.conf file, as the swift_has_path_suffix
parameter. This random string is used as we scale out our OpenStack Object Storage
environment—when creating extra nodes we do not generate a new random string.

Configuring OpenStack Object Storage
proxy server

Clients connect to OpenStack Object Storage via a proxy server. This allows us to scale out our
OpenStack Object Storage environment as needed, without affecting the frontend to which the
clients connect. Configuration of the proxy service is simply done by editing the /etc/swift/
proxy-server.conf file.

Chapter 4

99

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
To configure the OpenStack Object Storage proxy server, we simply create the /etc/swift/
proxy-server.conf file, with the following contents:

[DEFAULT]
bind_port = 8080
user = swift
swift_dir = /etc/swift

[pipeline:main]
Order of execution of modules defined below
pipeline = catch_errors healthcheck cache authtoken keystone proxy-
server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true
set log_name = swift-proxy
set log_facility = LOG_LOCAL0
set log_level = INFO
set access_log_name = swift-proxy
set access_log_facility = SYSLOG
set access_log_level = INFO
set log_headers = True

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:cache]
use = egg:swift#memcache
set log_name = cache

Installing OpenStack Object Storage

100

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_
factory
auth_protocol = http
auth_host = 172.16.0.200
auth_port = 35357
auth_token = ADMIN
service_protocol = http
service_host = 172.16.0.200
service_port = 5000
admin_token = ADMIN
admin_tenant_name = service
admin_user = swift
admin_password = openstack
delay_auth_decision = 0
signing_dir = /tmp/keystone-signing-swift

[filter:keystone]
use = egg:swift#keystoneauth
operator_roles = admin, swiftoperator

How it works...
The contents of the proxy-server.conf file define how the OpenStack Object Storage
proxy server is configured.

For our purposes, we will run our proxy on port 8080, as the user swift, and it will log to
syslog, using the log level of LOCAL1 (this allows us to filter against these messages).

We configure our swift proxy server healthcheck behavior to handle caching (by use of
memcached) and TempAuth (local authentication meaning our proxy server will handle
basic authentication).

The [filter:authtoken] and [filter:keystone] sections connects our OpenStack
Object Storage proxy to our Controller virtual machine.

The endpoint_URL option is useful when there is a requirement for a specific URL to be
returned that differs from the default. This is used in scenarios where the endpoint URL
comes back on an address that is inaccessible on the network or you want to present this
differently to the end user to fit your network.

See also
ff There are more complex options and features described in the following file, that is

installed when you install OpenStack Swift:
/usr/share/doc/swift-proxy/proxy-server.conf-sample.gz.

Chapter 4

101

Configuring Account Server
Account Server lists the available containers on our node. As we are creating a setup
where we have four virtual devices available under the one hood, they each have their
own list of available containers, but they run on different ports. These represent the rsync
account numbers seen previously, for example, port 6012 is represented by [account6012]
within rsync.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
For this section, we're creating four different Account Server configuration files that differ only
in the port that the service will run on and the path on our single disk that corresponds to that
service on that particular port.

1.	 We begin by creating an initial Account Server configuration file for our first node. Edit
/etc/swift/account-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6012
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]
vm_test_mode = yes

[account-auditor]

[account-reaper]

Installing OpenStack Object Storage

102

2.	 We then use this file to create the remaining three virtual nodes, each with their
appropriate unique values as follows:

cd /etc/swift/account-server

sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

How it works...
What we have accomplished is to create the first Account Server device node, which we
named 1.conf, under the /etc/swift/swift-account directory. This defined our
Account Server for node 1, which will run on port 6012.

We then took this file and made the subsequent Account Servers run on their respective
ports, with a search and replace, using sed.

We ended up with four files, under our swift-account configuration directory, which
defined the following services:

account-server 1: Port 6012, device /srv/1/node, Log Level LOCAL2
account-server 2: Port 6022, device /srv/2/node, Log Level LOCAL3
account-server 3: Port 6032, device /srv/3/node, Log Level LOCAL4
account-server 4: Port 6042, device /srv/4/node, Log Level LOCAL5

Configuring Container Server
Container Servers contains Object Servers seen in our OpenStack Object Storage
environment. The configuration of this is similar to configuring Account Server.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

Chapter 4

103

How to do it...
As with configuring the Account Server, we follow a similar procedure for Container Server,
creating the four different configuration files that correspond to a particular port and area on
our disk.

1.	 We begin by creating an initial Container Server configuration file for our first node.
Edit /etc/swift/container-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6011
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[account-replicator]
vm_test_mode = yes

[account-updater]

[account-auditor]

[account-sync]

[container-sync]

[container-auditor]

[container-replicator]

[container-updater]

Installing OpenStack Object Storage

104

2.	 We then use this file to create the remaining three virtual nodes, each with their
appropriate unique values, as follows:

cd /etc/swift/container-server

sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e \
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e \
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e \
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

How it works...
What we have accomplished is to create the first Container Server node configuration file,
which we named 1.conf, under the /etc/swift/swift-container directory. This
defined our Container Server for node 1, which will run on port 6011.

We then took this file and made subsequent Container Servers run on their respective ports,
with a search and replace, using sed.

We ended up with four files, under our swift-container configuration directory, which
defined the following:

container-server 1: Port 6011, device /srv/1/node, Log Level LOCAL2
container-server 2: Port 6021, device /srv/2/node, Log Level LOCAL3
container-server 3: Port 6031, device /srv/3/node, Log Level LOCAL4
container-server 4: Port 6041, device /srv/4/node, Log Level LOCAL5

Configuring Object Server
Object Server contains the actual objects seen in our OpenStack Object Storage environment
and configuration of this is similar to configuring the Account Server and Container Server.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

Chapter 4

105

How to do it...
As with configuring the Container Server, we follow a similar procedure for Object Server,
creating the four different configuration files that correspond to a particular port and area on
our disk.

1.	 We begin by creating an initial Object Server configuration file for our first node. Edit /
etc/swift/object-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6010
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]
vm_test_mode = yes

[object-updater]

[object-auditor]

2.	 We then use this file to create the remaining three virtual nodes, each with their
appropriate unique values, as follows:
cd /etc/swift/object-server

sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

Installing OpenStack Object Storage

106

How it works...
What we have accomplished is to create the first Object Server node configuration file, which
we named 1.conf, under the /etc/swift/swift-container directory. This defined our
Object Server for node 1, which will run on port 6010.

We then took this file and made subsequent Object Servers run on their respective ports, with
a search and replace, using sed.

We end up with four files, under our swift-object configuration directory, which defined
the following:

object-server 1: Port 6010, device /srv/1/node, Log Level LOCAL2
object-server 2: Port 6020, device /srv/2/node, Log Level LOCAL3
object-server 3: Port 6030, device /srv/3/node, Log Level LOCAL4
object-server 4: Port 6040, device /srv/4/node, Log Level LOCAL5

The three preceding sections have shown us how to configure
Account Servers, Object Servers, and Container Servers, each
running on their respective ports. These sections all tie up to
the modules configured in our rsyncd.conf file.

Making rings
The final step is to create the Object ring, Account ring, and Container ring that each of our
virtual nodes exists in.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

Chapter 4

107

How to do it...
The OpenStack Object Storage ring keeps track of where our data exists in our cluster. There
are three rings that OpenStack Storage understands, and they are the Account, Container,
and Object rings. To facilitate quick rebuilding of the rings in our cluster, we will create a script
that performs the necessary steps.

1.	 The most convenient way to create the rings for our OpenStack Storage environment
is to create a script. Create /usr/local/bin/remakerings:
#!/bin/bash

cd /etc/swift
rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz

Object Ring
swift-ring-builder object.builder create 18 3 1
swift-ring-builder object.builder add z1-127.0.0.1:6010/sdb1 1
swift-ring-builder object.builder add z2-127.0.0.1:6020/sdb2 1
swift-ring-builder object.builder add z3-127.0.0.1:6030/sdb3 1
swift-ring-builder object.builder add z4-127.0.0.1:6040/sdb4 1
swift-ring-builder object.builder rebalance

Container Ring
swift-ring-builder container.builder create 18 3 1
swift-ring-builder container.builder add z1-127.0.0.1:6011/sdb1 1
swift-ring-builder container.builder add z2-127.0.0.1:6021/sdb2 1
swift-ring-builder container.builder add z3-127.0.0.1:6031/sdb3 1
swift-ring-builder container.builder add z4-127.0.0.1:6041/sdb4 1
swift-ring-builder container.builder rebalance

Account Ring
swift-ring-builder account.builder create 18 3 1
swift-ring-builder account.builder add z1-127.0.0.1:6012/sdb1 1
swift-ring-builder account.builder add z2-127.0.0.1:6022/sdb2 1
swift-ring-builder account.builder add z3-127.0.0.1:6032/sdb3 1
swift-ring-builder account.builder add z4-127.0.0.1:6042/sdb4 1
swift-ring-builder account.builder rebalance

2.	 Now we can run the script as follows:
sudo chmod +x /usr/local/bin/remakerings

sudo /usr/local/bin/remakerings

Installing OpenStack Object Storage

108

3.	 You will see output similar to the following:
Device z1-127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6020/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6030/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6040/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.
Device z1-127.0.0.1:6011/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6021/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6031/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6041/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.
Device z1-127.0.0.1:6012/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6022/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6032/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6042/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.

How it works
In Swift, a ring functions like a cereal box decoder ring. That is, it keeps track of where
various bits of data reside in a given swift cluster. In our example, we have provided details for
creating the rings as well as executed a rebuild of said rings.

Creation of the rings is done using the swift-ring-builder command and involves the
following steps, repeated for each ring type (Object, Container, and Account):

1.	 Creating the ring (of type Object, Container, or Account): To create the ring, we use
the following syntax:
swift-ring-builder builder_file create part_power replicas
 min_part_hours

Creation of the ring specifies a builder file to create three parameters: part_power,
replicas, and min_part_hours. This means 2^part_power (18 is used in
this instance) is the number of partitions to create, replicas are the number of
replicas (3 is used in this case) of the data within the ring, and min_part_hours
(1 is specified in this case) is the time in hours before a specific partition can be
moved in succession.

Chapter 4

109

2.	 Assigning a device to the ring: To assign a device to a ring, we use the following
syntax:
swift-ring-builder builder_file add zzone-ip:port/
device_name weight

Adding a node to the ring specifies the same builder_file created in the first
step. We then specify a zone (for example, 1, prefixed with z) that the device will be
in, ip (127.0.0.1) is the IP address of the server that the device is in, port (for
example, 6010) is the port number that the server is running on, and device_name
is the name of the device on the server (for example, sdb1). The weight is a float
weight that determines how many partitions are put on the device, relative to the rest
of the devices in the cluster.

3.	 Rebalancing the ring: A balanced Swift ring is one where the number of data
exchanges between nodes is minimized while still providing the configured
number of replicas. A number of cases for rebalancing a Swift ring are provided
in Chapter 5, Using OpenStack Object Storage and Chapter 6, Administering
OpenStack Object Storage. To rebalance the ring, we use the following syntax
within the /etc/swift directory:
swift-ring-builder builder_file rebalance

This command will distribute the partitions across the drives in the ring.

The previous process is run for each of the rings: object, container, and account.

Stopping and starting OpenStack
Object Storage

Now that we have configured our OpenStack Object Storage installation, it's time to start our
services, so that they're running on our swift virtual machine, ready for us to use for storing
objects and images in our OpenStack environment.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

Installing OpenStack Object Storage

110

How to do it...
Controlling OpenStack Object Storage services is achieved using SysV Init scripts, utilizing the
service command.

Since the OpenStack Object Storage services may have started following installation of
the packages, we will restart the needed services to ensure the services have the correct
configuration and are running as expected.

sudo swift-init main start

sudo swift-init rest start

How it works...
The OpenStack Object Storage services are simply started, stopped, and restarted, using the
following syntax:

sudo swift-init main {start, stop, restart}

sudo swift-init rest {start, stop, restart}

Configuring OpenStack Object Storage with
OpenStack Identity Service

The OpenStack Object Storage service configured in the previous sections uses the built in
TempAuth mechanism to manage accounts. This is analogous to the deprecated_auth
mechanism we can configure with the OpenStack Compute service. This section shows you
how to move from TempAuth to OpenStack Identity Service to manage accounts.

Getting ready
For this section, we will log in to our swift host for configuration of OpenStack Object Storage
Service as well as to a client that has access to the keystone client, to manage OpenStack
Identity Service.

Chapter 4

111

How to do it...
Configuring OpenStack Object Storage to use the OpenStack Identity Service is carried
out as follows:

1.	 We first use the keystone client to configure the required endpoints and accounts
under OpenStack Identity Service, as follows:
Set up environment

export ENDPOINT=172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Swift Proxy Address

export SWIFT_PROXY_SERVER=172.16.0.210

Configure the OpenStack Object Storage Endpoint

keystone --token $SERVICE_TOKEN --endpoint $SERVICE_ENDPOINT
service-create --name swift --type object-store --description
'OpenStack Storage Service'

Service Endpoint URLs

ID=$(keystone service-list | awk '/\ swift\ / {print $2}')

Note we're using SSL

PUBLIC_URL="http://$SWIFT_PROXY_SERVER:443/v1/AUTH_\$(tenant_id)s"

ADMIN_URL="http://$SWIFT_PROXY_SERVER:443/v1"

INTERNAL_URL=$PUBLIC_URL

keystone endpoint-create --region RegionOne --service_id
 $ID --publicurl $PUBLIC_URL --adminurl $ADMIN_URL
 --internalurl $INTERNAL_URL

2.	 With the endpoints configured to point to our OpenStack Storage server, we can now
set up the swift user, so our proxy server can authenticate with the OpenStack Object
Identity server.
Get the service tenant ID

SERVICE_TENANT_ID=$(keystone tenant-list | awk '/\ service\
 / {print $2}')

Installing OpenStack Object Storage

112

Create the swift user

keystone user-create --name swift --pass swift --tenant_id
 $SERVICE_TENANT_ID --email swift@localhost
 --enabled true

Get the swift user id

USER_ID=$(keystone user-list | awk '/\ swift\ /
 {print $2}')

Get the admin role id

ROLE_ID=$(keystone role-list | awk '/\ admin\ /
 {print $2}')

Assign the swift user admin role in service tenant

keystone user-role-add --user $USER_ID --role $ROLE_ID
 --tenant_id $SERVICE_TENANT_ID

3.	 On the OpenStack Storage server (swift), we now install the Keystone Python
libraries, so that OpenStack Identity Service can be used. This is done as follows:
sudo apt-get update

sudo apt-get install python-keystone

4.	 We now need to verify our proxy server configuration. To do this, edit the following
file:/etc/swift/proxy-server.conf, and ensure it resembles the below:
[DEFAULT]
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key
user = swift
log_facility = LOG_LOCAL1

[pipeline:main]
pipeline = catch_errors healthcheck cache authtoken keystone
proxy-server

[app:proxy-server]
use = egg:swift#proxy
account_autocreate = true

Chapter 4

113

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:cache]
use = egg:swift#memcache

[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:filter_
factory
operator_roles = Member,admin

[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_
factory
service_port = 5000
service_host = 172.16.0.200
auth_port = 35357
auth_host = 172.16.0.200
auth_protocol = http
auth_token = ADMIN
admin_token = ADMIN
admin_tenant_name = service
admin_user = swift
admin_password = swift
cache = swift.cache

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:swift3]
use = egg:swift#swift3

5.	 We pick up these changes by restarting the proxy server service, as follows:
sudo swift-init proxy-server restart

Installing OpenStack Object Storage

114

How it works...
Configuring OpenStack Object Storage to use OpenStack Identity Service involves altering the
pipeline so that keystone is used as the authentication.

After setting the relevant endpoint within the OpenStack Identity Service to be an SSL
endpoint, we can configure our OpenStack Object Storage proxy server.

To do this, we first define the pipeline to include keystone and authtoken,
and then configure these further down the file in the [filter:keystone] and
[filter:authtoken] sections. In the [filter:keystone] section, we set someone
with admin and Member roles assigned to be an operator of our OpenStack Object Storage.
This allows our users who have one of those roles to have write permissions in our OpenStack
Object Storage environment.

In the [filter:authtoken] section, we tell our proxy server where to find the OpenStack
Identity Service. Here, we also set the service username and password for this service that we
have configured within OpenStack Identity Service.

Setting up SSL access
Setting up SSL access provides secure access between the client and our OpenStack Object
Storage environment in exactly the same way SSL provides secure access to any other web
service. To do this, we configure our proxy server with SSL certificates.

Getting ready
To begin with, log in to our swift server.

How to do it...
Configuration of OpenStack Object Storage to secure communication between the client and
the proxy server is done as follows:

1.	 In order to provide SSL access to our proxy server, we first create the certificates, as
follows:
cd /etc/swift

sudo openssl req -new -x509 -nodes -out cert.crt -keyout
 cert.key

Chapter 4

115

2.	 We need to answer the following questions that the certificate process asks us:

3.	 Once created, we configure our proxy server to use the certificate and key by editing
the /etc/swift/proxy-server.conf file:
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key

4.	 With this in place, we can restart the proxy server, using the swift-init command,
to pick up the change:

sudo swift-init proxy-server restart

How it works...
Configuring OpenStack Object Storage to use SSL involves configuring the proxy server to use
SSL. We first configure a self-signed certificate using the openssl command, which asks
for various fields to be filled in. An important field is the Common Name field. Put in the fully
qualified domain name (FQDN hostname or IP address that you would use to connect to the
Swift server.

Once that has been done, we specify the port that we want our proxy server to listen on. As we
are configuring an SSL HTTPS connection, we will use the standard TCP port 443 that HTTPS
defaults to. We also specify the certificate and key that we created in the first step, so when a
request is made, this information is presented to the end user to allow secure data transfer.

With this in place, we then restart our proxy server to listen on port 443.

Installing OpenStack Object Storage

116

Testing OpenStack Object Storage
We are now ready to test our installation of OpenStack Object Storage, and we can achieve
this in a couple of ways—by using curl and using the swift command-line utility.

Getting ready
Ensure that you are logged in to your swift virtual machine. To do this, run:

vagrant ssh swift

How to do it...
In this recipe, we will use the swift command to test connectivity with OpenStack
Object Storage.

Using a swift command to test OpenStack Object Storage
Rather than seeing the web service output, we can use the command-line tool swift
(previously known as st) to ensure we have a working setup. Note the output matches the
reply headers seen when queried using curl.

swift -A http://172.16.0.200:5000/v2.0 -U service:swift -K swift -V 2.0
stat

You should see the following output:

 Account: AUTH_test
Containers: 0
 Objects: 0
 Bytes: 0
Accept-Ranges: bytes

How it works...
OpenStack Object Storage is a web service so we can use traditional command-line
web clients to troubleshoot and verify our OpenStack Object Storage installation.
This becomes very useful for debugging OpenStack Object Storage at this low level,
just as you would debug any web service.

The swift command uses the credentials we supplied when building the proxy-server.conf.
In turn, this command authenticates us against keystone and then lists the statistics of
that container.

5
Using OpenStack

Object Storage

In this chapter, we will cover:

ff Installing the swift client tool

ff Creating containers

ff Uploading objects

ff Uploading large objects

ff Listing containers and objects

ff Downloading objects

ff Deleting containers and objects

ff Using OpenStack Object Storage ACLs

Introduction
Now that we have an OpenStack Object Storage environment running, we can use it to store
our files. To do this, we can use a tool provided, named swift. This allows us to operate
our OpenStack Object Storage environment by allowing us to create containers, upload files,
retrieve them, and set required permissions on them, as appropriate.

Installing the swift client tool
In order to operate our OpenStack Object Storage environment, we need to install an
appropriate tool on our client. Swift ships with the swift tool, which allows us to upload,
download, and modify files in our OpenStack Object Storage environment.

Using OpenStack Object Storage

118

Getting ready
To begin with, ensure you are logged into computer or server where we can install the swift
client and has access to our OpenStack environment on the host address 172.16.0.0/16. The
following instructions describe the installation procedure for the Ubuntu Operating System.

We will be using OpenStack Object Storage, authenticating against the OpenStack Identity
Service, Keystone.

How to do it...
We download and install the swift client conveniently from the Ubuntu repositories using the
familiar apt-get utility as follows:

1.	 Installation of the swift client is done by installing the swift package as well as
requiring the python libraries for the OpenStack Identity Service, Keystone. We do this
as follows:
sudo apt-get update

sudo apt-get -y install python-swiftclient python-keystone

2.	 No further configuration is required. To test that you have successfully installed
swift and can connect to your OpenStack Object Storage server, issue the following
command:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack stat

3.	 This will bring back statistics about our OpenStack Object Storage environment
to which a demo user, who is a member of the cookbook tenant, has access.
An example is shown in the following screenshot:

Chapter 5

119

How it works…
The swift client package is easily installed under Ubuntu and it requires no further
configuration after downloading, as all parameters needed to communicate with OpenStack
Object Storage use the command line.

When contacting that OpenStack Object Storage which uses
the OpenStack Identity Service authentication, you configure
your client to communicate to OpenStack Identity Server, not
OpenStack Object Storage Proxy Server.

Creating containers
A container can be thought of as a root folder under our OpenStack Object Storage. They
allow for objects to be stored within them. Creating objects and containers can be achieved
in a number of ways. A simple way is by using the swift client tool. We run this client tool
against our OpenStack Identity Service, which in turn has been configured to communicate
to our OpenStack Object Storage proxy server and allows us to create, delete, and modify
containers and objects in our OpenStack Object Storage environment.

Getting ready
Log in to a computer or a server that has the swift client package installed.

How to do it...
Carry out the following steps to create a container under OpenStack Object Storage:

1.	 To create a container named test, under our OpenStack Object Storage server,
using the swift tool, we do the following:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack post test

2.	 We can verify the creation of our container by listing the containers in our OpenStack
Object Storage environment. To list containers, execute the following:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list

This will simply list the containers in our OpenStack Object Storage environment, as shown in
the following section:

test

Using OpenStack Object Storage

120

How it works...
Creation of containers using the supplied swift tool is very simple. The syntax is as follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password post container

This authenticates our user through OpenStack Identity Service using Version 2.0
authentication, which in turn connects to the OpenStack Object Storage endpoint configured
for this tenant and executes the required command to create the container.

Uploading objects
Objects are the files or directories that are stored within a container. Uploading objects can
be achieved in a number of ways. A simple way is by using the swift client tool. We run this
client tool against our OpenStack Identity Service, which has been configured to communicate
to our OpenStack Object Storage Proxy Server. This allows us to create, delete, and modify
containers and objects in our OpenStack Object Storage environment.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following steps to upload objects in our OpenStack Object Storage environment:

Uploading objects
1.	 Create a 500MB file under /tmp as an example file to upload, as follows:

dd if=/dev/zero of=/tmp/example-500Mb bs=1M count=500

2.	 We upload this file to our OpenStack Object Storage account using the
following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack upload test \

 /tmp/example-500Mb

Chapter 5

121

Uploading directories
1.	 Create a directory and two files to upload to our OpenStack Object Storage

environment, as follows:
mkdir /tmp/test

dd if=/dev/zero of=/tmp/test/test1 bs=1M count=20

dd if=/dev/zero of=/tmp/test/test2 bs=1M count=20

2.	 To upload directories and their contents, we issue the same command but just
specify the directory. The files within the directory are recursively uploaded. We do
this as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack upload test /tmp/test

Uploading multiple objects
We are able to upload a number of objects using a single command. To do this, we simply
specify each of them on our command line. To upload our test1 and test2 files, we issue
the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack upload test \

 /tmp/test/test1 /tmp/test/test2

How it works...
Uploading files to our OpenStack Object Storage environment is simple to achieve with the
swift client tool. We can upload individual files or complete directories. The syntax is as
follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password upload container \

 file|directory {file|directory … }

Note that when uploading files, the objects that are created are of the
form that we specify to the swift client, including the full paths. For
example, uploading /tmp/example-500Mb uploads that object as
tmp/example-500Mb. This is because OpenStack Object Storage is
not a traditional tree-based hierarchical filesystem that our computers
and desktops usually employ, where paths are delimited by a single
slash (/ or \). OpenStack Object Storage consists of a flat set of objects
that exist in containers where that slash forms the object name itself.

Using OpenStack Object Storage

122

Uploading large objects
Individual objects up to 5 GB in size can be uploaded to OpenStack Object Storage.
However, by splitting the objects into segments, the download size of a single object is
virtually unlimited. Segments of the larger object are uploaded and a special manifest file
is created that, when downloaded, sends all the segments concatenated as a single object.
By splitting objects into smaller chunks, you also gain efficiency by allowing parallel uploads.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following steps to upload large objects, split into smaller segments:

Uploading objects
1.	 Creating a 1 GB file under /tmp as an example file to upload. We do this as follows:

dd if=/dev/zero of=/tmp/example-1Gb bs=1M count=1024

2.	 Rather than upload this file as a single object, we will utilize segmenting to split this
into smaller chunks, in this case, 100-MB segments. To do this, we specify the size of
the segments with the -s option as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack upload test \

 -S 102400000 /tmp/example-1Gb

You will see output similar to the following screenshot showing the status of each upload:

Chapter 5

123

How it works...
OpenStack Object Storage is very good at storing and retrieving large objects. To efficiently do
this in our OpenStack Object Storage environment, we have the ability to split large objects
into smaller objects with OpenStack Object Storage, maintaining this relationship between the
segments and the objects that appear as a single file. This allows us to upload large objects in
parallel, rather than stream a single large file. To achieve this, we use the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password upload container \

 -S bytes_to_split large_file

Now, when we list our containers under our account, we have an extra container, named
test_segments created, holding the actual segmented data fragments for our file. Our
test container holds the view that our large object is a single object. Behind the scenes,
the metadata within this single object will pull back the individual objects from the test_
segments container, to reconstruct the large object.

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list

When the preceding command is executed, we get the following output:

test
test_segments

Now, execute the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list test

The following output is generated:

tmp/example-1Gb

Listing containers and objects
The swift client tool allows you to easily list containers and objects within your OpenStack
Object Storage account.

Getting ready
Log in to a computer or server that has the swift client package installed.

Using OpenStack Object Storage

124

How to do it...
Carry out the following to list objects within our OpenStack Object Storage environment:

Listing all objects in a container
In the preceding recipes, we uploaded a small number of files. To simply list the objects within
our test container, we issue the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list test

This will show output similar to the following:

Listing specific object paths within a container
To list just the files within the tmp/test path, we specify this with the -p parameter,
as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list -p tmp/test test

This will list our two files, as follows:

tmp/test/test1
tmp/test/test2

We can put partial matches in the -p parameter too. For example, to list all files starting with
tmp/ex we issue the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack list -p tmp/ex test

This will list files that match that string:

tmp/example-500Mb

Chapter 5

125

How it works...
The tool swift is a basic but versatile utility that allows us to do many of the things we want
to do with files. Listing them in a way that suits the user is also possible. To simply list the
contents of our container, the syntax is as follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password list container

To list a file in a particular path within the container, we add in the -p parameter to the syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password list -p path container

Downloading objects
Now that we have configured OpenStack Object Storage, we can also retrieve the stored
objects using our swift client.

Getting ready
Log in to a computer or server has the swift client package installed.

How to do it...
We will download objects from our OpenStack Object Storage environment using the different
swift client options:

Downloading objects
To download the object tmp/test/test1, we issue the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack download test tmp/test/test1

This downloads the object to our filesystem. As we downloaded a file with the full path, this
directory structure is preserved, so we end up with a new directory structure of tmp/test
with a file in it called test1.

Using OpenStack Object Storage

126

Downloading objects with the -o parameter
To download the file without preserving the file structure, or to simply rename it to something
else, we specify the -o parameter, as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack download test \

 tmp/test/test1 -o test1

Downloading all objects from a container
We are also able to download complete containers to our local filesystem. To do this, we
simply specify the container we want to download, as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack download test

This will download all objects found under the test container.

Downloading all objects from our OpenStack Object
Storage account
We can download all objects that reside under our OpenStack Object Storage account. If we
have multiple containers, all objects from all containers will be downloaded. We do this with
the --all parameter, as follows:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack download --all

This will download all objects with full paths preceded by the container name, for example:

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. Downloading objects and containers is achieved using the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password download container {object … }

To download all objects from our account (for example, from all containers), we specify the
following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password download --all

Chapter 5

127

Deleting containers and objects
The swift client tool allows us to directly delete containers and objects within our OpenStack
Object Storage environment.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
We will delete objects in our OpenStack Object Storage environment using the different
swift client options:

Deleting objects
To delete the object tmp/test/test1, we issue the following:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack delete test tmp/test/test1

This deletes the object tmp/test/test1 from the container test.

Deleting multiple objects
To delete the objects tmp/test/test2 and tmp/example-500Mb, we issue the
following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack delete test \

 tmp/test/test2 tmp/example-500Mb

This deletes the objects tmp/test/test2 and tmp/example-500Mb from the
container test.

Deleting containers
To delete our test container we issue the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack delete test

This will delete the container and any objects under this container.

Using OpenStack Object Storage

128

Deleting everything from our account
To delete all containers and objects in our account, we issue the following command:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack delete --all

This will delete all containers and any objects under these containers.

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. Deleting objects and containers is achieved using the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password delete container {object … }

To download all objects from our account (for example, from all containers), we specify the
following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password delete --all

Using OpenStack Object Storage ACLs
ACLs allow us to have greater control over individual objects and containers without requiring
full read/write access to a particular container. With ACLs you can expose containers globally
or restrict to individual tenants and users.

Getting ready
Log in to a computer that has the keystone and swift clients available.

How to do it...
Carry out the following steps:

1.	 We will first create an account in our OpenStack Identity Server that is only
a Member in the cookbook tenant. We will call this user, user.
export ENDPOINT=172.16.0.200

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Chapter 5

129

First get TENANT_ID related to our 'cookbook' tenant

TENANT_ID=$(keystone tenant-list \

 | awk ' / cookbook / {print $2}')

We then create the user specifying the TENANT_ID

keystone user-create \

 --name user \

 --tenant_id $TENANT_ID \

 --pass openstack \

 --email user@localhost \

 --enabled true

We get this new user's ID

USER_ID=$(keystone user-list | awk ' / user / {print $2}')

We get the ID of the 'Member' role

ROLE_ID=$(keystone role-list \

 | awk ' / Member / {print $2}')

Finally add the user to the 'Member' role in cookbook

keystone user-role-add \

 --user $USER_ID \

 --role $ROLE_ID \

 --tenant_id $TENANT_ID

2.	 With our new user created, we will now create a container using a user that has
admin privileges (and therefore a container that our new user initially doesn't have
access to), as follows:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:admin -K openstack post testACL

3.	 We will then set this container to be Read-Only for our user named user, as follows:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:admin -K openstack post –r user testACL

4.	 We will try to upload a file to this container using our new user, as follows:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:user -K openstack upload testACL \

 /tmp/test/test1

Using OpenStack Object Storage

130

This brings back an HTTP 403 Forbidden message similar to the following:

Object HEAD failed: https://172.16.0.210:8080/v1/AUTH_53d87d9b6679
4904aa2c84c17274392b/testACL/tmp/test/test1 403 Forbidden

5.	 We will now give write access to the testACL container for our user by allowing them
write access to the container:
swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:demo -K openstack post –w user –r user \

 testACL

6.	 When we repeat the upload of the file, it now succeeds:

swift -V 2.0 -A http://172.16.0.200:5000/v2.0/ \

 -U cookbook:user -K openstack upload testACL \

 /tmp/test/test1

How it works...
Granting access control is done on a container basis and is achieved at the user level. When a
user creates a container, other users can be granted that access by adding other users to the
container. The users will then be granted read and write access to containers, for example:

swift -V 2.0 -A http://keystone_server:5000/v2.0 \

 -U tenant:user -K password post -w user -r user container

6
Administering

OpenStack Object
Storage

In this chapter, we will cover:

ff Preparing drives for OpenStack Object Storage

ff Managing OpenStack Object Storage clusters with swift-init

ff Checking cluster health

ff Benchmarking OpenStack Object Storage

ff Managing Swift cluster capacity

ff Removing nodes from a cluster

ff Detecting and replacing failed hard drives

ff Collecting usage statistics

Introduction
Day-to-day administration of our OpenStack Object Storage cluster involves ensuring the files
within the cluster are replicated to the right number of nodes, reporting on usage within the
cluster, and dealing with failure of the cluster. This chapter builds upon the work in Chapter 5,
Using OpenStack Object Storage, to show you the tools and processes required to administer
OpenStack Object Storage.

Administering OpenStack Object Storage

132

Preparing drives for OpenStack
Object Storage

OpenStack Object Storage doesn't have any dependencies on any particular filesystem,
as long as that filesystem supports extended attributes (xattr). It has been generally
acknowledged that the XFS filesystem yields the best all-round performance and resilience.

Getting ready
Before we start, we need to add a disk to our swift node. To do this, edit your Vagrant file to
include the following section:

 if prefix == "swift"

 file_to_disk = './new_disk.vdi'

 vbox.customize['createhd', '--filename', file_to_
disk, '--size', 50 * 1024]

 vbox.customize ['storageattach', :id,
'--storagectl', 'SATA Controller', '--port', 1, '--device', 0, '--type',
'hdd', '--medium', file_to_disk]

end

Next, start your Swift node:

vagrant up swift

Log in to a swift node that has a disk ready to be formatted for use with OpenStack
Object Storage:

vagrant ssh swift

How to do it...
Carry out the following steps to prepare a hard drive for use within an OpenStack Object
Storage node. For this, we will assume our new drive is ready for use, has been set up with an
appropriate partition, and is ready for formatting. Take for example the partition /dev/sdb1.

1.	 To format it for use, using XFS, we run the following command:
sudo mkfs.xfs -i size=1024 /dev/sdb1

Chapter 6

133

2.	 This produces a summary screen of the new drive and partition, as follows:

3.	 Once formatted, we set the mount options in our /etc/fstab file, as follows:
/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbu
fs=8 0 0

4.	 Create the mount point, and mount the filesystem as follows:

mkdir -p /srv/node/sdb1

mount /srv/node/sdb1

How it works...
While it is recommended you do thorough testing of OpenStack Object Storage for your own
environments, it is generally recommended that you use the XFS filesystem. OpenStack Object
Storage requires a filesystem that supports extended attributes (xattr) and it has been
shown that XFS offers good all-round performance in all areas.

In order to accommodate the metadata used by OpenStack Object Storage, we increase the
inode size to 1024. This is set at the time of the format with the -i size=1024 parameter.

Further performance considerations are set at mount time. We don't need to record file
access times (noatime) and directory access times (nodiratime). Barrier support flushes
the write-back cache to disk at an appropriate time. Disabling this yields a performance
boost, as the highly available nature of OpenStack Object Storage allows for failure of a drive
(and therefore, write of data), so this safety net in our filesystem can be disabled (with the
nobarrier option), to increase speed.

Administering OpenStack Object Storage

134

Managing OpenStack Object Storage cluster
with swift-init

Services in our OpenStack Object Storage environment can be managed using the swift-init
tool. This tool allows us to control all the daemons in OpenStack Storage in a convenient way.
For information on installing and configuring the Swift services or daemons, see Chapter 4,
Installing OpenStack Object Storage.

Getting ready
Log in to any OpenStack Object Storage node.

How to do it...
The swift-init tool can be used to control any of the running daemons in our OpenStack
Storage cluster, which makes it a convenient tool, rather than calling individual init scripts.

Each command can be run with the following commands:

Controlling OpenStack Object Storage proxy

swift-init proxy-server { command }

Controlling OpenStack Object Storage object daemons

swift-init object { command }

swift-init object-replicator {command }

swift-init object-auditor { command }

swift-init object-updater { command }

Controlling OpenStack Object Storage container daemons

swift-init container { command }

swift-init container-update { command }

swift-init container-replicator { command }

swift-init container-auditor { command }

Controlling OpenStack Object Storage account daemons

swift-init account { command }

swift-init account-auditor { command }

swift-init account-reaper { command }

swift-init account-replicator { command }

Chapter 6

135

Controlling all daemons

swift-init all { command }

{ command } can be one of the following:

Command Description
stop, start, and restart As stated
force-reload and reload These mean the same thing—graceful shutdown

and restart
shutdown Shutdown after waiting for current processes to

finish
no-daemon Start a server within the current shell
no-wait Spawn server and return immediately
once Start server and run one pass
status Display the status of the processes for the server

How it works...
The swift-init tool is a single tool that can be used to manage any of the running
OpenStack Object Storage daemons. This allows for consistency in managing our cluster.

Checking cluster health
We are able to measure the health of our cluster by using the swift-dispersion-report
tool. This is done by checking the set of our distributed containers, to ensure that the objects
are in their proper places within the cluster.

Getting ready
Log in to the OpenStack Object Storage Proxy Server To log on to our OpenStack Object
Storage Proxy host that was created using Vagrant, issue the following command:
vagrant ssh swift.

Administering OpenStack Object Storage

136

How to do it...
Carry out the following steps to set up the swift-dispersion tools to report on
cluster health:

1.	 We first create the configuration file (/etc/swift/dispersion.conf) required by
the swift-dispersion tools, as follows:
[dispersion]

auth_url = http://172.16.0.200:5000/auth/v2.0

auth_user = cookbook:admin

auth_key = openstack

2.	 Now we need to create containers and objects throughout our cluster, so that they
are in distinct places, by using the swift-dispersion-populate tool. We do this
as follows:
sudo swift-dispersion-populate

3.	 Once these containers and objects have been set up, we can then run swift-
dispersion-report, as follows:
sudo swift-dispersion-report

This produces the following result:

4.	 We then set up a cron job that repeatedly checks the health of these containers and
objects. We do this as follows:

echo "/usr/bin/swift-dispersion-report" | sudo tee -a /etc/cron.
hourly/swift-dispersion-report

How it works...
The health of objects can be measured by checking whether the replicas are correct. If our
OpenStack Object Storage cluster replicates an object 3 times and 2 of the 3 are in the
correct place, the object would be 66.66% healthy.

Chapter 6

137

To ensure we have enough replicated objects in our cluster, we populate it with the
swift-dispersion-populate tool, which creates 2,621 containers and objects,
thereby increasing our cluster size. Once in place, we can then set up a cron job that will
run hourly to ensure our cluster is consistent and therefore giving good indication that our
cluster is healthy.

By setting up a cron job on our proxy node (which has access to all our nodes), we can
constantly measure the health of our entire cluster. In our example, the cron job runs hourly,
executing the swift-dispersion-report tool.

Benchmarking OpenStack Object Storage
Understanding the capabilities of your OpenStack Object Storage environment is crucial to
determining limits for capacity planning and areas for performance tuning. OpenStack Storage
provides a tool named swift-bench that helps you understand these capabilities.

Getting ready
Log in to the OpenStack Object Storage Proxy Server.To log on to our OpenStack Object
Storage Proxy host that was created using Vagrant, issue the following command:
vagrant ssh swift

How to do it...
Carry out the following to benchmark an OpenStack Object Storage cluster:

1.	 First, create a configuration file named /etc/swift/swift-bench.conf,
containing the following contents:
[bench]

auth = http://172.16.0.200:5000/v2.0

user = service:swift

key = swift

auth_version = 2.0

concurrency = 10

object_size = 1

num_objects = 1000

num_gets = 10000

delete = yes

Administering OpenStack Object Storage

138

2.	 With this in place, we can simply execute swift-bench, specifying our
configuration file:
swift-bench /etc/swift/swift-bench.conf

This produces the following output:

How it works...
OpenStack Object Storage comes with a benchmarking tool named swift-bench. This runs
through a series of puts, gets, and deletions, calculating the throughput and reporting of any
failures in our OpenStack Objectc Storage environment. The configuration file contains the
following content:

[bench]
auth = Keystone authentication URL
user = tenant:username
key = key/password
auth_version = version of Keystone API
concurrency = number of concurrent operations
object_size = the size of the object in bytes
num_objects = number of objects to upload
num_gets = number of objects to download
delete = whether to perform deletions

The user specified must be capable of performing the required operations in our environment,
including the creation of containers.

Managing swift cluster capacity
A zone is a group of nodes that is as isolated as possible from other nodes (separate servers,
network, power, even geography). A Swift ring functions like a cereal box decoder ring,
allowing the swift services to locate each objects. The ring guarantees that every replica is
stored in a separate zone. To increase capacity in our environment, we can add an extra zone,
to which data will then replicate. In this example, we will add an extra storage node with IP
172.16.0.212, with its second disk, /dev/sdb, used for our OpenStack with IP 172.16.0.212
Storage. This node makes up the only node in this zone.

Chapter 6

139

To add additional capacity to existing zones, we repeat the instructions for each existing zone
in our cluster. For example, the following steps assume zone 5 (z5) does not exist, so this gets
created when we build the rings. To simply add additional capacity to existing zones,
we specify the new servers in the existing zones (zones 1-4). The instructions remain the
same throughout.

Getting ready
Log in to the OpenStack Object Storage proxy server node as well as a new storage node (that
will form the basis of our new zone).

How to do it...
To add an extra zone to our OpenStack Object Storage cluster, carry out the following steps:

Proxy Server
1.	 Add the following entries to the ring where STORAGE_LOCAL_NET_IP is the IP

address of our new node and ZONE is our new zone:

Ensure you run these commands while in the /etc/swift directory.

cd /etc/swift

ZONE=5

STORAGE_LOCAL_NET_IP=172.16.0.212

WEIGHT=100

DEVICE=sdb1

swift-ring-builder account.builder add z$ZONE-$STORAGE_LOCAL_NET_
IP:6002/$DEVICE $WEIGHT

swift-ring-builder container.builder add z$ZONE-$STORAGE_LOCAL_
NET_IP:6001/$DEVICE $WEIGHT

swift-ring-builder object.builder add z$ZONE-$STORAGE_LOCAL_NET_
IP:6000/$DEVICE $WEIGHT

2.	 We need to verify the contents of the rings by issuing the following commands:
swift-ring-builder account.builder

swift-ring-builder container.builder

swift-ring-builder object.builder

Administering OpenStack Object Storage

140

3.	 Finally, we rebalance the rings, which could take some time to run:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

4.	 Once this has finished, we need to copy account.ring.gz, container.ring.gz,
and object.ring.gz over to our new storage node and all other storage nodes:

scp *.ring.gz $STORAGE_LOCAL_NET_IP:/tmp

And other scp to other storage nodes

Storage Node
1.	 We first move the copied account.ring.gz, container.ring.gz, and object.

ring.gz files to the /etc/swift directory and ensure they're owned by swift:
mv /tmp/*.ring.gz /etc/swift

chown swift:swift /etc/swift/*.ring.gz

Prepare the storage on this node, as described in the first recipe of this chapter,
Preparing drives for OpenStack Object Storage.

2.	 Edit the /etc/swift/swift.conf file, so that the [swift-hash] section
matches that of all other nodes, as follows:
[swift-hash]

Random unique string used on all nodes

swift_hash_path_suffix = QAxxUPkzb7lP29OJ

3.	 We now need to create the appropriate the /etc/rsyncd.conf file with the
following contents:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 172.16.0.4

[account]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/account.lock

[container]
max connections = 2

Chapter 6

141

path = /srv/node/
read only = false
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

4.	 Enable and start rsync, as follows:
sed -i 's/=false/=true/' /etc/default/rsync

service rsync start

5.	 We need to create the /etc/swift/account-server.conf file with the following
contents:
[DEFAULT]

bind_ip = 172.16.0.212

workers = 2

[pipeline:main]

pipeline = account-server

[app:account-server]

use = egg:swift#account

[account-replicator]

[account-auditor]

[account-reaper]

Administering OpenStack Object Storage

142

6.	 Also create the /etc/swift/container-server.conf file with the following
contents:
[DEFAULT]
bind_ip = 172.16.0.212
workers = 2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

7.	 Finally, create the /etc/swift/object-server.conf file with the following
contents:
[DEFAULT]
bind_ip = 172.16.0.212
workers = 2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

8.	 We can now start this storage node, which we have configured to be in our fifth zone,
as follows:

swift-init all start

Chapter 6

143

How it works...
Adding extra capacity by adding additional nodes or zones is done in the following two steps:

1.	 Configuring the zones and nodes on the proxy server

2.	 Configuring the storage node(s)

For each storage node and the devices on those storage nodes, we run the following
command, which adds the storage node and device to our new zone:

'swift-ring-builder object.builder add zzone-storage_ip:6000/device
weight

Once this has been configured on our proxy node, we rebalance the rings. This updates the
object, account, and container rings. We copy the updated gzipped files as well as the swift
hash key used within our environment, to all our storage node(s).

On the storage node, we simply run through the following steps:

1.	 Configure the disk (partition and format with XFS)

2.	 Configure and start rsyncd

3.	 Configure the account, container, and object services

4.	 Start the OpenStack Object Storage services on the storage node(s)

Data is then redistributed within our OpenStack Object Storage environment onto this
new zone's node.

Removing nodes from a cluster
Converse to adding capacity to our OpenStack Object Storage cluster, there may be times
where we need to scale back, or remove a failed node for service. We can do this by removing
nodes from the zones in our cluster. In the following example, we will remove the node
172.16.0.212 in z5, which only has one storage device attached, /dev/sdb1.

Administering OpenStack Object Storage

144

Getting ready
Log in to the OpenStack Object Storage Proxy Server.To log on to our OpenStack Object
Storage Proxy host that was created using Vagrant, issue the following command:
vagrant ssh swift

How to do it...
Carry out the following to remove a storage node from a zone:

Proxy Server
1.	 To remove a node from OpenStack Object Storage, we first set its weight to be 0, so

that when the rings get rebalanced, data is drained away from this node:
cd /etc/swift

swift-ring-builder account.builder set_weight z5-
172.16.0.212:6002/sdb1 0

swift-ring-builder container.builder set_weight z5-
172.16.0.212:6001/sdb1 0

swift-ring-builder object.builder set_weight z5-172.16.0.212:6000/
sdb1 0

2.	 We then rebalance the rings as follows:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

3.	 Once this is done, we can remove the node in this zone from the ring, as follows:
swift-ring-builder account.builder remove z5-172.16.0.212:
6002/sdb1

swift-ring-builder container.builder remove z5-172.16.0.212:6001/
sdb1

swift-ring-builder object.builder remove z5-172.16.0.212:6000/sdb1

4.	 We then copy the resultant account.ring.gz, container.ring.gz, and
object.ring.gz files over to the rest of nodes in our cluster. We are now free to
decommission this storage node by physically removing this device.

Chapter 6

145

How it works...
Manually removing a node from our OpenStack Object Storage cluster is done in three steps:

1.	 Setting the node's weight to be 0, so data isn't being replicated to it, by using the
swift-ring-builder <ring> set_weight command.

2.	 Rebalancing the rings to update the data replication

3.	 Removing the node from the OpenStack Object Storage cluster, using the
swift-ring-builder <ring> remove command. Once done, we are then free
to decommission that node. We repeat this for each node (or device) in the zone.

Detecting and replacing failed hard drives
OpenStack Object Storage won't be of much use if it can't access the hard drives where our
data is stored; so being able to detect and replace failed hard drives is essential. OpenStack
Object Storage can be configured to detect hard drive failures with the swift-drive-audit
command. This will allow us to detect failures so that we can replace the failed hard drive
which is essential to the system health and performance.

Getting ready
Log in to an OpenStack Object Storage node as well as the proxy server.

How to do it...
To detect a failing hard drive, carry out the following:

Storage node
1.	 We first need to configure a cron job that monitors /var/log/kern.log for failed

disk errors on our storage nodes. To do this, we create a configuration file named /
etc/swift/swift-drive-audit.conf, as follows:
[drive-audit]
log_facility=LOG_LOCAL0
log_level=INFO
device_dir=/srv/node
minutes=60
error_limit=1

Administering OpenStack Object Storage

146

2.	 We then add a cron job that executes swift-drive-audit hourly, or as often as
needed for your environment, as follows:
echo '/usr/bin/swift-drive-audit /etc/swift/swift-drive-audit.
conf' | sudo tee -a /etc/cron.hourly/swift-drive-audit

3.	 With this in place, when a drive has been detected as faulty, the script will unmount
it, so that OpenStack Object Storage can work around the issue. Therefore, when a
disk has been marked as faulty and taken offline, you can now replace it.

Without swift-drive-audit taking care of this
automatically, you should need act manually to ensure that
the disk has been dismounted and removed from the ring.

4.	 Once the disk has been physically replaced, we can follow instructions as described
in the Managing swift cluster capacity recipe, to add our node or device back into
our cluster.

How it works...
Detection of failed hard drives can be picked up automatically by the swift-drive-
audit tool, which we set up as a cron job to run hourly. With this in place, it detects failures,
unmounts the drive so it cannot be used, and updates the ring, so that data isn't being stored
or replicated to it.

Once the drive has been removed from the rings, we can run maintenance on that device and
replace the drive.

With a new drive in place, we can then put the device back in service on the storage node by
adding it back into the rings. We can then rebalance the rings by running the swift-ring-
builder commands.

Collecting usage statistics
OpenStack Object Storage can report on usage metrics by using the swift-recon
middleware added to our object-server configuration. By using a tool, also named
swift-recon, we can then query these collected metrics.

Getting ready
Log in to an OpenStack Object Storage node as well as the proxy server.

Chapter 6

147

How to do it...
To collect usage statistics from our OpenStack Object Storage cluster, carry out the
following steps:

1.	 We first need to modify our /etc/swift/object-server.conf configuration file
to include the swift-recon middleware, so that it looks similar to the following:
[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

2.	 Once this is in place, we simply restart our object-server service, using swift-
init, as follows:

swift-init object-server restart

Now that the command is running, we can use the swift-recon tool on the proxy server to
get usage statistics, as follows:

Disk usage
swift-recon -d

This will report on disk usage in our cluster.

swift-recon -d -z5

This will report on disk usage in zone 5.

Administering OpenStack Object Storage

148

Load average
swift-recon -l

This will report on the load average in our cluster.

swift-recon -l -z5

This will report on load average of the nodes in zone 5.

Quarantined statistics
swift-recon -q

This will report on any quarantined containers, objects, and accounts in the cluster.

swift-recon -q -z5

This will report on this information just for zone 5.

Check for unmounted devices

swift-recon -u

This will check for any unmounted drives in our cluster.

swift-recon -z5 -u

This will do the same just for zone 5.

Check replication metrics
swift-recon -r

This will report on replication status within our cluster.

swift-recon -r -z5

This will just perform this for nodes in zone 5.

We can perform all these actions with a single command to get all telemetry data back about
our cluster, as follows:

swift-recon --all

We can just get this information for nodes within zone 5 by adding -z5 at the end, as follows:

swift-recon --all -z5

Chapter 6

149

How it works...
To enable usage statistics within OpenStack Object Storage, we add in the swift-recon
middleware, so metrics are collected. We add this to the object server by adding the following
lines to /etc/swift/object-server.conf, on each of our storage nodes:

[pipeline:main]
pipeline = recon object-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

With this in place and our object servers restarted, we can query this telemetry data by using
the swift-recon tool. We can collect the statistics from the cluster as a whole, or from
specific zones with the -z parameter.

Note that we can also collect all or multiple statistics by specifying the --all flag or
appending multiple flags to the command line. For example, to collect load average and
replication statistics from our nodes in zone 5, we would execute the following command:

swift-recon -r -l -z5

7
Starting OpenStack

Block Storage

In this chapter, we will cover:

ff Configuring Cinder volume services

ff Configuring OpenStack Compute for Cinder

ff Creating volumes

ff Attaching volumes to an instance

ff Detaching volumes from an instance

ff Deleting volumes

Introduction
Data written to currently running instances on disks is not persistent—meaning that when you
terminate such instances, any disk writes will be lost. Volumes are persistent storage that you
can attach to your running OpenStack Compute instances; the best analogy is that of a USB
drive that you can attach to an instance. Like USB drives, you can only attach instances to
only one computer at a time.

In prior OpenStack releases, volume services were provided by nova-volume which has
evolved over time into OpenStack Block Storage, aka Cinder. OpenStack Block Storage is very
similar to Amazon EC2's Elastic Block Storage—the difference is in how volumes are presented
to the running instances. Under OpenStack Compute, volumes can easily be managed using
an iSCSI exposed LVM volume group named cinder-volumes, so this must be present on
any host running the service Cinder volume.

Starting OpenStack Block Storage

152

At times, managing OpenStack Block storage can be confusing as Cinder volume is the
running service name and cinder-volumes is the name of the LVM Volume Group that is
exposed by the Cinder-volume service.

Configuring Cinder volume services
In this recipe, we will configure an additional VirtualBox VM to host the volumes and
prerequisites that cinder-volume requires, to attach volumes to our instances.

Getting ready
To use Cinder volumes, we will make some changes to our Vagrantfile to provide an additional
Virtual Machine. This VM will provide a loopback filesystem on which we will build the LVM
volumes as well as install the required services for Cinder.

OpenStack Block Storage and Cinder will be used
interchangeably in this chapter.

How to do it...
First, we edit our Vagrantfile to add an additional VM so we can boot it and then set up LVM.
Once the VM is created and powered on, we will setup a loopback filesystem and setup LVM
appropriately. Following that, we will install and configure prerequisites such as open-iscsi.
Finally, we will configure Cinder.

For adding a new VirtualBox Virtual Machine to your Vagrant File perform the
following steps:

1.	 Open your Vagrantfile for editing.

2.	 Under the nodes section, add the following line for the Cinder node:
nodes = {

...
 'cinder' => [1, 211],

}

What this line does is tell Vagrant to build a single VM whose IP addresses
will end in .211.

3.	 Power this VM on:

vagrant up cinder

Chapter 7

153

To configure your new VM for use by Cinder-volume perform following steps:

4.	 Log into the new VM
vagrant ssh cinder

5.	 Install prerequisites:
Install some dependencies

sudo apt-get install -y linux-headers-'uname -r' build-essential
python-mysqldb xfsprogs

sudo apt-get install -y cinder-api cinder-scheduler cinder-volume
open-iscsi python-cinderclient tgt iscsitarget iscsitarget-dkms

6.	 Now we need to restart open-iscsi:

sudo service open-iscsi restart

To create a loopback filesystem and set up LVM for use with cinder-volume perform
following steps:

1.	 First we create a 5 GB file that will be used for the loopback filesystem:
dd if=/dev/zero of=cinder-volumes bs=1 count=0 seek=5G

Once that file is made we create the loopback filesystem:

sudo losetup /dev/loop2 Cinder-volumes

2.	 Finally, we create the LVM setup required for Cinder-volume:

sudo pvcreate /dev/loop2

sudo vgcreate cinder-volumes /dev/loop2

It is important to note that this is not a persistent filesystem.
Rather, it is shown here for demonstration. In a production setup,
you would use an actual volume, rather than a loopback file, and
set it up to mount persistently.

Starting OpenStack Block Storage

154

How it works...
In order for us to use cinder-volume, we need to prepare a suitable disk or partition that
has been configured as an LVM volume and that is specifically named as cinder-volumes.
For our virtual environment, we simply create a loopback filesystem that we can then set up
to be part of this LVM volume group. In a physical installation, the steps are no different. We
simply configure a partition to be of type 8e (Linux LVM) in fdisk and then add this partition to
a volume group named cinder-volumes.

Once done, we then install the required cinder-volume packages and supporting services.
As cinder-volume uses iSCSI as the mechanism for attaching a volume to an instance, we
install the appropriate packages that are required to run iSCSI targets.

At the time of the first draft of this writing, there was not yet a Fiber
Channel driver for Cinder. Between the first draft and now, the
community and storage vendors have worked hard to get a FC driver
for Cinder out there. You will however need to work with them in order
to best implement it.

Configuring OpenStack Compute for
Cinder volume

We now need to tell our OpenStack Compute service about our new
Cinder volume service.

Getting ready
As we are performing this setup in a multi-node environment, you will need to be logged into
your controller, compute, and Cinder nodes.

This recipe assumes you have created a .stackrc file. To create a .stackrc file, on each
node you need it, open a text file .stackrc and add the following contents:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

Chapter 7

155

How to do it...
In our multi-node installation, we will need to configure the controller, compute, and Cinder
nodes. Thus, we have broken down the instructions in that order.

To configure your OpenStack controller node for cinder-volume perform the
following steps:

1.	 In our multi-node configuration, the OpenStack controller is responsible for
authentication (keystone) as well as hosting the Cinder database. First, we will
configure authentication:
vagrant ssh controller
sudo su -
source .stackrc
keystone service-create --name volume --type volume --description
'Volume Service'

Cinder Block Storage Service

CINDER_SERVICE_ID=$(keystone service-list | awk '/\ volume\ /
{print $2}')

CINDER_ENDPOINT="172.16.0.211"

PUBLIC="http://$CINDER_ENDPOINT:8776/v1/%(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $CINDER_
SERVICE_ID --publicurl $PUBLIC --adminurl $ADMIN --internalurl
$INTERNAL

keystone user-create --name cinder --pass cinder --tenant_id
$SERVICE_TENANT_ID --email cinder@localhost --enabled true

CINDER_USER_ID=$(keystone user-list | awk '/\ cinder \ / {print
$2}')

keystone user-role-add --user $CINDER_USER_ID --role $ADMIN_ROLE_
ID --tenant_id $SERVICE_TENANT_ID

Starting OpenStack Block Storage

156

Next, we create the MySQL database for use with Cinder:

MYSQL_ROOT_PASS=openstack

MYSQL_CINDER_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e 'CREATE DATABASE cinder;'

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON
cinder.* TO 'cinder'@'%';"

mysql -uroot -p$MYSQL_ROOT_PASS -e "SET PASSWORD FOR 'cinder'@'%'
= PASSWORD('$MYSQL_CINDER_PASS');"

2.	 Finally, we edit nova.conf to make the controller node aware of Cinder:
vim /etc/nova/nova.conf

3.	 Add the following lines:
volume_driver=nova.volume.driver.ISCSIDriver

enabled_apis=ec2,osapi_compute,metadata

volume_api_class=nova.volume.cinder.API

iscsi_helper=tgtadm

4.	 Now restart the nova services:

for P in $(ls /etc/init/nova* | cut -d'/' -f4 | cut -d'.' -f1)

 do

 sudo stop ${P}

 sudo start ${P}

 done

To configure the OpenStack compute nodes for Cinder perform the following steps:

1.	 Next on our list for configuration are the OpenStack compute nodes. In our scenario,
there is only a single compute node to configure:
vagrant ssh compute

sudo su -

Now, edit nova.conf

Chapter 7

157

vim /etc/nova/nova.conf

2.	 Add the following lines:
volume_driver=nova.volume.driver.ISCSIDriver

enabled_apis=ec2,osapi_compute,metadata

volume_api_class=nova.volume.cinder.API

iscsi_helper=tgtadm

3.	 Now restart the nova services:

for P in $(ls /etc/init/nova* | cut -d'/' -f4 | cut -d'.' -f1)

 do

 sudo stop ${P}

 sudo start ${P}

 done

To configure the Cinder node for use with cinder-volume perform the following steps:

1.	 Run the following commands:
vagrant ssh cinder

sudo su -

2.	 First, we modify /etc/Cinder/api-paste.ini to enable keystone as follows:
sudo sed -i 's/127.0.0.1/'172.16.0.200'/g' /etc/cinder/api-paste.
ini

sudo sed -i 's/%SERVICE_TENANT_NAME%/service/g' /etc/cinder/api-
paste.ini

sudo sed -i 's/%SERVICE_USER%/Cinder/g' /etc/cinder/api-paste.ini

sudo sed -i 's/%SERVICE_PASSWORD%/Cinder/g' /etc/cinder/api-paste.
ini

Starting OpenStack Block Storage

158

3.	 Next, we modify /etc/cinder/cinder.conf to configure the database, iSCSI, and
RabbitMQ. Ensure cinder.conf has the following lines:
[DEFAULT]

rootwrap_config=/etc/cinder/rootwrap.conf

sql_connection = mysql://cinder:openstack@${CONTROLLER_HOST}/
cinder

api_paste_config = /etc/cinder/api-paste.ini

iscsi_helper=tgtadm

volume_name_template = volume-%s

volume_group = cinder-volumes

verbose = True

auth_strategy = keystone

#osapi_volume_listen_port=5900

Add these when not using the defaults.

rabbit_host = ${CONTROLLER_HOST}

rabbit_port = 5672

state_path = /var/lib/cinder/

4.	 To wrap up, we populate the Cinder database and restart the Cinder services:

cinder-manage db sync

cd /etc/init.d/; for i in $(ls cinder-*); do sudo service $i
restart; done

Chapter 7

159

How it works...
In our multi-node OpenStack configuration, we have to perform configuration across our
environment to enable cinder-volume. On the OpenStack controller node, we created a
keystone service, endpoint, and user. We additionally assigned the "Cinder" user, the admin
role within the service tenant. Additionally on the controller, we created a Cinder MySQL
database and modified nova.conf to allow the use of Cinder.

On our compute nodes, the modifications were much simpler as we only needed to modify
nova.conf to enable Cinder.

Finally, we configured the Cinder node itself. We did this by enabling keystone and initializing
the Cinder database, and connecting the Cinder service to its MySQL database. After which
we wrapped up by restarting the Cinder services.

Creating volumes
Now that we have created a Cinder volume service, we can create volumes for use by our
instances. We do this under our Ubuntu client using one of the Cinder Client tool, aka the
python-Cinderclient, so we are creating volumes specific to our tenancy (project).

Getting ready
To begin with, ensure you are logged in to your Ubuntu client that has access to the Cinder
Client tools. These packages can be installed using the following command:

sudo apt-get update

sudo apt-get install python-cinderclient

How to do it...
Carry out the following to create a volume using Cinder Client:

1.	 First, create the volume that we will attach to our instance.
Source in our OpenStack Nova credentials

. stackrc

cinder create --display-name cookbook 1

Starting OpenStack Block Storage

160

2.	 On completion, the command returns the following output:

+---------------------+--------------------------------------+

| Property | Value |

+---------------------+--------------------------------------+

| attachments | [] |

| availability_zone | nova |

| bootable | false |

| created_at | 2013-04-22T03:46:35.915626 |

| display_description | None |

| display_name | cookbook |

| id | fc2152ff-dda9-4c1c-b470-d95390713159 |

| metadata | {} |

| size | 1 |

| snapshot_id | None |

| source_volid | None |

| status | creating |

| volume_type | None |

+---------------------+--------------------------------------+

Chapter 7

161

How it works...
Creating Cinder-volumes for use within our project, cookbook, is very straightforward.

With Cinder Client, we use the create option with the following syntax:

cinder create --display_name volume_name size_Gb

Here, volume_name can be any arbitrary name with no spaces.

We can see the actual LVM volumes on cinder-volumes, using the usual LVM tools as
follows:

sudo lvdisplay cinder-volumes
 --- Logical volume ---

 LV Name /dev/Cinder-volumes/volume-fc2152ff-dda9-4c1c-
b470-d95390713159

 VG Name Cinder-volumes

 LV UUID cwAmEF-HGOH-54sr-pOXx-lOof-iDmy-lYyBEQ

 LV Write Access read/write

 LV Status available

 # open 1

 LV Size 1.00 GiB

 Current LE 256

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 256

 Block device 252:2

Starting OpenStack Block Storage

162

Attaching volumes to an instance
Now that we have a usable volume, we can attach this to any instance. We do this by using
the nova volume-attach command in Nova Client.

Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to the Nova Client
tools. These packages can be installed using the following command:

sudo apt-get update

sudo apt-get install python-novaclient

How to do it...
Carry out the following steps to attach a volume to an instance using Nova Client:

1.	 If you have no instance running, spin one up. Once running, run the nova list
command and note the instance ID.
Source in credentials

source .stackrc

nova list

The following output is generated:

2.	 Using the instance ID, we can attach the volume to our running instance, as follows:
nova volume-attach <instance_id> <volume_id> /dev/vdc

/dev/vdc is specified here so as not to conflict with /dev/vdb,
as the former refers to the same instance described previously.

3.	 The preceding command will output the name of the volume when successful. To
view this, log in to your running instance and view the volume that is now attached:
sudo fdisk -l /dev/vdc

Chapter 7

163

4.	 We should see 1 GB of space available for the running instance. As this is like adding
a fresh disk to a system you need to format it for use and then mount it as part of
your filesystem.
sudo mkfs.ext4 /dev/vdc

sudo mkdir /mnt1

sudo mount /dev/vdc /mnt1

df -h

5.	 We should now see the newly attached disk available at /mnt1:

Filesystem Size Used Avail Use% Mounted on

/dev/vda 1.4G 602M 733M 46% /

devtmpfs 248M 12K 248M 1% /dev

none 50M 216K 50M 1% /run

none 5.0M 0 5.0M 0% /run/lock

none 248M 0 248M 0% /run/shm

/dev/vdb 5.0G 204M 4.6G 5% /mnt

/dev/vdc 5.0G 204M 4.6G 5% /mnt1

How it works...
Attaching a cinder-volume is no different from plugging in a USB stick on your own
computer—we attach it, (optionally) format it, and mount it.

Under Nova Client, the option volume-attach takes the following syntax:

nova volume-attach instance_id volume_id device

instance_id is the ID returned from nova list for the instance that we want to attach the
volume to. The volume_id is the name of the device within the instance that we will use to
mount the volume that can be retrieved using nova volume-list. This device is the device
that will be created on our instance that we use to mount the volume.

Detaching volumes from an instance
Since Cinder Volumes are persistent storage and the best way of thinking of them is as a USB
drive, this means you can only attach them to a single computer at a time. When you remove
a USB drive from the computer, you can then move it to another one and attach it. The same
principle works with Nova Volumes. To detach a volume, we use another Nova Client option
volume-detach.

Starting OpenStack Block Storage

164

Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to Nova Client
tools. These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

How to do it...
Carry out the following steps to detach a volume using Nova Client:

1.	 First, we identify the volumes attached to running instances, by running the
command nova volume-list, as follows:
nova volume-list

2.	 This brings back the following output:

3.	 On the instance that has the volume mounted, we must first unmount it as follows (if
using the example before, this is on /mnt1):
sudo unmount /mnt1

4.	 Back on the Ubuntu client, where Nova Client is installed, we can now detach this
volume as follows:
nova volume-detach <instance_id> <volume_id>

5.	 We are now free to attach this to another running instance, with data preserved.

How it works...
Detaching cinder-volume is no different from removing a USB stick from a computer. We
first unmount the volume from our running instance. Then, we detach the volume from the
running instance using nova volume-detach from Nova Client.

nova volume-detach has the following syntax:

nova volume-detach instance_id volume_id

Chapter 7

165

instance_id is the ID from the Attached to column returned from nova volume-list for
the instance we want to detach the volume from. volume_id is the ID listed in the ID column
from the nova volume-list command.

Deleting volumes
At some point, you will no longer need the volumes you have created. To remove the volumes
from the system permanently, so they are no longer available, we simply pull out another tool
from Nova Client, the volume-delete option.

Getting ready
Ensure you are logged in to that Ubuntu host where Nova Client is installed and have sourced
in your OpenStack environment credentials.

How to do it...

Be aware, this is a one-way deletion of data. It's gone. Unless you've
good backups, you will want to ensure you really want it gone

To delete a volume using Nova Client, carry out the following steps:

1.	 First, we list the volumes available to identify the volume we want to delete,
as follows:
nova volume-list

2.	 We now simply use the volume ID to delete this from the system, as follows:
nova volume-delete <volume_id>

3.	 On deletion, the volume you have deleted will be printed on screen.

How it works...
Deleting images removes the LVM volume from use within our system. To do this, we simply
specify the volume ID as a parameter to nova volume-delete (when using Nova Client),
first ensuring that the volume is not in use.

8
OpenStack Networking

In this chapter, we will cover:

ff Configuring Flat networking with DHCP

ff Configuring VLAN Manager networking

ff Configuring per tenant IP ranges for VLAN Manager

ff Automatically assigning fixed networks to tenants

ff Modifying a tenant's fixed network

ff Manually associating floating IPs to instances

ff Manually disassociating floating IPs from instances

ff Automatically assigning Floating IPs

ff Creating a sandbox Network server for Neutron with VirtualBox and Vagrant

ff Installing and configuring OVS for Neutron

ff Installing and configuring a Neutron API server

ff Configuring Compute nodes for Neutron

ff Creating a Neutron network

ff Deleting a Neutron network

ff Creating an external Neutron network

OpenStack Networking

168

Introduction
OpenStack supports three modes of networking in the current Grizzly release. These are
Flat networking, VLAN Manager, and the very latest, Software Defined Networking (SDN).
Software Defined Networking is an approach to networking in which Network Administrators
and Cloud Operators can programmatically define virtual network services. The Software
Defined Network component of OpenStack Networking is called Neutron. This project code
name is widely used in the OpenStack community to describe the SDN mode of OpenStack
Networking and was previously known as Quantum but due to copyright reasons, the
codename Quantum had to be replaced. As a result, this project is now known as Neutron.
More details about the change can be found at https://wiki.openstack.org/wiki/
Network/neutron-renaming. At present, during the Grizzly release, the paths and service
names still refer to Quantum but will change in future releases.

With SDN, we can describe complex networks in a secure multi-tenant environment that
overcomes the issues often associated with the Flat and VLAN OpenStack networks. For Flat
networks, as the name describes, all tenants live within the same IP subnet regardless of
tenancy. VLAN networking overcomes this by separating the tenant IP ranges with a VLAN ID,
but VLANs are limited to 4096 IDs, which is a problem for larger installations, and the user is
still limited to a single IP range within their tenant to run their applications. With both these
modes, ultimate separation of services is achieved through effective Security Group rules.

SDN in OpenStack is also a pluggable architecture, which means we are able to plug-in and
control various switches, firewalls, load balancers and achieve various functions as Firewall
as a Service—all defined in software to give you the fine grain control over your complete
cloud infrastructure.

VLAN Manager is the default in OpenStack and allows for a multi-tenant environment where
each of those separate tenants is assigned an IP address range and VLAN tag that ensures
project separation. In Flat networking mode, isolation between tenants is done at the Security
Group level.

Configuring Flat networking with DHCP
In Flat networking with DHCP, the IP addresses for our instances are assigned from a running
DHCP service on the OpenStack Compute host. This service is provided by dnsmasq. As with
Flat networking, a bridge must be configured manually in order for this to function.

https://wiki.openstack.org/wiki/Network/neutron-renaming
https://wiki.openstack.org/wiki/Network/neutron-renaming

Chapter 8

169

Getting ready
To begin with, ensure you're logged in to the controller. If this was created using Vagrant
we can access this using the following command:

vagrant ssh controller

If using the controller host created in Chapter 3, Starting OpenStack Compute, we will
have three interfaces in our virtual instance:

ff eth0 is a NAT to the host running VirtualBox

ff eth1 is our floating (public) network (172.16.0.0/16)

ff eth2 is our fixed (private) network (10.0.0.0/8)

In a physical production environment, that first interface wouldn't be present, and references
to this NATed eth0 in the following section can be ignored.

How to do it...
To configure our OpenStack environment to use Flat networking with DHCP, carry out the
following steps:

1.	 OpenStack requires bridging in order for any of the network modes to work. The
bridge tools are installed as dependencies when installing the OpenStack nova-
network package, but if they aren't installed you can issue the following commands:
sudo apt-get update

sudo apt-get -y install bridge-utils

2.	 We first need to configure our network bridge (br100) by editing /etc/network/
interfaces, as follows:
The primary network interface

auto eth0
iface eth0 inet dhcp
eth1 public
auto eth1
iface eth1 inet static
 address 172.16.0.201
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

OpenStack Networking

170

eth2 private
auto br100
iface br100 inet manual
 bridge_ports eth2
 bridge_stp off
 bridge_maxwait 0
 bridge_fd 0
 up ifconfig eth2 up

3.	 We then restart our network service to pick up the changes, as follows:
sudo /etc/init.d/networking restart

4.	 We now configure OpenStack Compute to use the new bridged interface as part of
our Flat network. Add the following lines to /etc/nova/nova.conf:
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge
network_manager=nova.network.manager.FlatDHCPManager
flat_network_dhcp_start=10.10.1.2
flat_network_bridge=br100
flat_interface=eth2
flat_injected=False
public_interface=eth1

5.	 Restart the required OpenStack Compute services, to pick up the changes:
sudo restart nova-compute

sudo restart nova-network

6.	 In order to separate private ranges per project (tenant), we get the ID of our tenant,
that we will use when creating the network. On a client machine with the keystone
client installed, run the following command:
keystone tenant-list

This shows output like the following:

Chapter 8

171

7.	 We now create a private (fixed) network—that OpenStack Compute can use—for that
particular tenant, as follows:
sudo nova-manage network create \

 --fixed_range_v4=10.10.1.0/24 \

 --label cookbook --bridge br100 \

 --project 950534b6b9d740ad887cce62011de77a

8.	 We can now create our floating public range that we will use to connect to our running
instances. We do this as follows:
sudo nova-manage floating create --ip_range=172.16.1.0/24

9.	 With this in place, we now have a bridge from our eth2 network and our internal
network assigned to our instances. To ensure this works in a multi-network device
host, we must ensure that forwarding has been enabled as follows:
sudo sysctl -w net.ipv4.ip_forward=1

10.	 When an instance spawns now, a private address is injected from our fixed address
range into our instance. We then access this as before, by assigning a public floating
IP to this instance, which associates this floating IP address with our instance's fixed
IP address.

How it works...
FlatDHCPManager networking is a common option for networking, as it provides a Flat
network that is only limited by the IP address range assigned. It doesn't require a Linux
operating system and the /etc/network/interfaces file in order to operate correctly
through the use of standard DHCP for assigning addresses.

In order to make FlatDHCPManager work, we manually configure our hosts with the same
bridging, which is set to br100, as specified in /etc/nova/nova.conf:

flat_network_bridge=br100

Once set up, we configure our network range, where we can specify in our /etc/nova/
nova.conf configuration file the start of this range that our instances get when they start:

flat_network_dhcp_start=10.10.1.2

When creating the fixed (private) range using nova-manage network create, we assign
this fixed range to a particular tenant (project). This allows us to have specific IP ranges that
are isolated from different projects in a multi-tenant environment.

When our instance boots up, our dnsmasq service that is running on our nova-network
host assigns an address from its dhcp pool to the instance.

OpenStack Networking

172

Also note that we don't assign an IP address to the interface that we connect to our bridge, in
our case eth2. We simply bring this interface up so we can bridge to it (and therefore forward
traffic to the instance interfaces that are bridged to it).

Configuring VLAN Manager networking
VLAN Manager networking is the default networking mode in OpenStack. When VLAN
mode is configured, each project (or tenancy) has its own VLAN and network assigned to
it. Any intermediary physical switches must however support 802.1q VLAN tagging, for this
to operate.

Virtual switches in our sandbox
environment support VLAN tagging.

Getting ready
To begin with, ensure you're logged in to the controller. If this was created using Vagrant we
can access this using the following command:

vagrant ssh controller

If using the controller host created in Chapter 3, Starting OpenStack Compute, we will
have three interfaces in our virtual instance:

ff eth0 is a NAT to the host running VirtualBox

ff eth1 is our floating (public) network (172.16.0.0/16)

ff eth2 is our fixed (private) network (10.0.0.0/8)

In a physical production environment, that first interface wouldn't be present, and references to
this NATed eth0 in the following section can be ignored.

How to do it...
To configure VLAN Manager carry out the following steps:

1.	 OpenStack requires bridging in order for any of the network modes to work. The
bridge tools are installed as dependencies when installing the OpenStack nova-
network package, but if they aren't installed you can issue the following commands.
As we are also configuring VLANs, the required package to support VLANs must also
be installed:
sudo apt-get update

sudo apt-get -y install bridge-utils vlan

Chapter 8

173

2.	 The networking on our host is as follows. This is defined in /etc/network/
interfaces on our Ubuntu host:
The primary network interface
auto eth0
iface eth0 inet dhcp

eth1 public
auto eth1
iface eth1 inet static
 address 172.16.0.201
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

eth2 private
auto eth2
iface eth2 inet manual
 up ifconfig eth2 up

3.	 We then restart our network service to pick up the changes, as follows:
sudo /etc/init.d/networking restart

4.	 By default, if we don't specify a Network Manager in our /etc/nova/nova.conf
file, OpenStack Compute defaults to VLAN networking. To explicitly state this, so
there are no ambiguities, we put the following lines in the /etc/nova/nova.conf
configuration file as follows:
network_manager=nova.network.manager.VlanManager
vlan_start=100
vlan_interface=eth2
public_interface=eth1
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge

5.	 Restart the required OpenStack Compute services, to pick up the changes:
sudo restart nova-compute

sudo restart nova-network

OpenStack Networking

174

6.	 In order to separate private ranges per project (tenant), we get the ID of our tenant
that we will use when creating the network. On a client machine with the keystone
client installed, run the following command:
. novarc

keystone tenant-list

This shows output like the following:

7.	 We now create a private network that OpenStack can use, which we are assigning to
a project, as follows:
sudo nova-manage network create \

 --fixed_range_v4=10.10.3.0/24 \

 --label cookbook --vlan=100 \

 --project 950534b6b9d740ad887cce62011de77a

8.	 Once created, we can configure our public network address space, which we will use
to connect to our instances:
sudo nova-manage floating create --ip_range=172.16.1.0/24

9.	 When we launch an instance now, the private address is assigned to the VLAN
interface. We can assign floating IP addresses to this instance, and they get
forwarded to the instance's internal private IP address.

How it works...
VLAN Manager networking is the default mode. For a private cloud environment, in networks
accustomed to VLANs, this option is the most flexible. It allows for per-project and secure
networking by using VLANs. If you do not have a --network_manager flag in your /etc/
nova/nova.conf file, OpenStack Compute will default to VlanManager.

Chapter 8

175

Creating the network is no different in any of the managers; in this instance, with
VlanManager, the private network is assigned to a VLAN that is specified in the --vlan=100
option. We then associate this network and VLAN with our cookbook project, by specifying
the ID of that tenant, using the --project option.

On our OpenStack Compute host, this creates an interface named vlan100, which is
the tagged interface to eth2, as specified in --vlan_interface from /etc/nova/
nova.conf.

Configuring per tenant IP ranges for
VLAN Manager

Tenants in OpenStack are a way of keeping user's cloud resources separate and are also
referred to as projects within Nova Network. In a tenant, there are a number of images,
instances, and its own network resources assigned to it. When we create a tenant, we assign
it its own VLAN with its own private and public ranges. For example, we may wish to create a
development tenancy that is separate from the performance testing tenancy and live tenancies.

Nova Networking uses the phrase project, which is
synonymous to tenants created with keystone, as such the two
terms are interchangeable when referring to projects.

Getting ready
To begin with, ensure you're logged in to the Controller server (our OpenStack VirtualBox
Virtual Machine, controller, created in Chapter 3, Starting OpenStack Compute). If this
was created using Vagrant you can log into this box using the following command:

vagrant ssh controller

How to do it...
In order to configure per-project (tenant) IP ranges, carry out the following steps:

1.	 First, on our keystone client, list the current projects, as follows:
Use the admin token

export ENDPOINT=172.16.0.201

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

keystone tenant-list

OpenStack Networking

176

This returns a list of projects in our example.

2.	 Now, let's create another project named development; the project user will be
demo. We do this as follows:
keystone tenant-create --name=development

An example of running the previous command is shown as follows:

3.	 This will return a project ID. Now let's create a fixed IP range for this project. We will
create a fixed range of 10.0.4.0/24. To allocate this to our project, along with a
new VLAN ID associated with this network, enter the following command:

sudo nova-manage network create \
 --label=development \

 --fixed_range_v4=10.10.4.0/24 \

 --project_id=bfe40200d6ee413aa8062891a8270edb \

 --vlan=101

How it works...
Creating IP address ranges for projects is done as part of creating new projects (tenants). We
first create the project, which returns an ID that we use when creating that network, using the
following syntax:

sudo nova-manage network create \

 --label=project_name \

 --fixed_range_v4=ip_range_cidr \

 --bridge_interface=interface \

 --project_id=id --vlan=vlan_id

Chapter 8

177

Automatically assigning fixed
networks to tenants

When using VlanManager to separate tenants, we can manually assign VLANs and network
ranges to them by creating a secure multi-tenant environment. We can also have OpenStack
to manage this association for us, so that when we create a project it automatically gets
assigned these details.

Getting ready
To begin with, ensure you're logged in to the Controller server (our OpenStack VirtualBox
Virtual Machine, controller, created in Chapter 3, Starting OpenStack Compute). If this
was created using Vagrant you can log into this box using the following command:

vagrant ssh controller

How to do it...
Carry out the following steps to configure networking in OpenStack to automatically assign
new tenants' individual VLANs and private (fixed) IP ranges:

1.	 In the file /etc/nova/nova.conf, ensure there is a flag called vlan_start with a
VLAN ID, for example:
vlan_start=100

2.	 We can now create a range of networks, each with 256 addresses available, by
issuing the following command:
sudo nova-manage network create \

 --num_networks=10 \

 --network_size=256 \

 --fixed_range_v4=10.0.0.0/8 \

 --label=auto

3.	 This creates 10 networks, with 256 IP addresses starting from 10.0.0.0/24 to
10.0.9.0/24 and starting from VLAN ID 100 to VLAN ID 110.

You can specify an alternative VLAN start ID on the command line by
adding in the --vlan=id option, where id is a number.

OpenStack Networking

178

How it works...
By specifying the --num_networks option and specifying the --network_size option
(the number of IPs in each of the created networks), we can tell our OpenStack environment
to create multiple networks within the range specified by --fixed_range_v4. When projects
are created now, rather than having to manually associate an address range with a tenant,
they are automatically assigned a VLAN, starting from the --vlan_start ID, as specified in
/etc/nova/nova.conf.

Modifying a tenant's fixed network
To ensure that our OpenStack environment is able to separate traffic from one tenant to
another, we assign different fixed ranges to each. When a fixed network is no longer required,
or we want to assign a particular tenant to a specific network, we can use the nova-manage
command to modify these details.

Getting ready
To begin with, ensure you're logged in to the OpenStack API server as well as to a client that
can access the keystone environment.

How to do it...
To assign a particular network to a tenant, carry out the following steps:

1.	 On a client that has access to the keystone command, run the following commands
to list the projects available:
Use the admin token

export ENDPOINT=172.16.0.201

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

keystone tenant-list

Chapter 8

179

An example of running the previous commands is as follows:

2.	 To view the list of networks and ranges available, issue the following command on an
OpenStack API host:
sudo nova-manage network list

An example of running the previous commands is as follows:

3.	 The output shown lists network ranges and their associated project IDs. From this, we
can see we have 10.0.3.0/24 not assigned to a project (where it says None under the
project column). To assign this network range to the development tenant, we issue
the following commands:
sudo nova-manage network modify \

 --project=bfe40200d6ee413aa8062891a8270edb \

 --fixed_range=10.0.3.0/24

4.	 When we view the output now for that network range, we will have this project ID
assigned to it and any instances spawned under this tenant will be assigned an
address in this range.

OpenStack Networking

180

How it works...
When configuring tenants in our OpenStack environment, it is recommended (although not a
requirement) to have their own private (fixed) range assigned to them. This allows for those
instances in each particular tenant to be kept separated through their different ranges along
with appropriately set security group rules.

The syntax to modify a network is as follows:

nova-manage network modify \

 --project=project_id \

 --fixed_range=ip_range

Manually associating floating IPs
to instances

When an instance boots, it is assigned a private IP address. This IP range is only accessible
within our virtual environment's network. To access this instance to serve the rest of the
network or the public, we need to assign it a floating IP, which is the range we configure when
we set up public IP ranges.

There are two ways to allocate floating IPs to instances: either automatically, as the instance is
spawned, or manually through our client tools. In both cases, our tenancy must have a range
of floating IPs assigned to it so they can be allocated.

Getting ready
To begin with, ensure you're logged in to the Controller server (our OpenStack VirtualBox
Virtual Machine, controller, created in Chapter 1, Keystone OpenStack Identity Service).
If this was created using Vagrant you can log into this box using the following command:

vagrant ssh controller

While on the controller host, run the following command to list any floating ranges we
have assigned:

sudo nova-manage floating list

This should list the IP range we originally set up when we first installed our openstack1 server.

None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
…

To allocate a floating IP to an instance, ensure you're logged in to a client that is running
Nova Client.

Chapter 8

181

How to do it...
To assign a floating (public) IP address to an instance using Nova Client, carry out the
following steps:

1.	 To allocate one of the floating IP addresses available to our project, we run the
following command:
nova floating-ip-create

2.	 An address will appear from the pool of IPs we have available, for example
172.16.1.1.

3.	 To associate this address to an instance, we issue the following command:

nova add-floating-ip \

 6c79552c-7006-4b74-a037-ebe9707cc9ce \

 172.16.1.1

We are now able to communicate with that instance using this assigned floating IP address.

How it works...
Instances are not automatically accessible outside of the OpenStack host unless a public IP
address is attached to it. Manually associating an address consists of the following two steps:

1.	 Allocating an address from the available IP range.

2.	 Associating the address with an instance.

This is an important concept, as it allows you to control the allocation of IP addresses as well
as allocating specific addresses to specific instances, which is very much like Amazon's Elastic
IP feature.

Manually disassociating floating IPs
from instances

In our cloud environment, we have the ability to add and remove access to and from the
instance publicly by adding or removing a floating IP address to or from it. This flexibility allows
us to move services seamlessly between instances. To the outside world it would appear to be
the same instance, as their access to it via that IP has not changed to them.

OpenStack Networking

182

Getting ready
To begin with, ensure you are logged in to a client machine with Nova Client installed.

How to do it...
To disassociate a public (floating) address from an instance using Nova Client, carry out the
following steps:

1.	 We first list the instance in our environment, to identify the instance we wish to
remove the public IP address from, as follows:
nova list

2.	 Once we have identified the instance we wish to disassociate the IP from, we execute
the following command:
nova remove-floating-ip \

 2abf8d8d-6f45-42a5-9f9f-63b6a956b74f \

 172.16.1.1

3.	 This immediately removes the association with this address from the instance.

If we no longer require that floating IP address for our project, we can remove it from our
project's pool by issuing the following command:

nova floating-ip-delete 172.16.1.1

How it works...
Removing a floating IP address is very straightforward. When using Nova Client, we use the
remove-floating-ip option to the nova command.

Automatically assigning floating IPs
When an instance boots, it is assigned a private IP address. This private IP address is only
accessible within our virtual environment's network. To access this instance to serve the rest
of the network or the public, we need to assign it a floating IP, which is the range we configure
when we set up public IP ranges.

Chapter 8

183

Automatically assigning floating IPs to instances gives us the ability, in our environment, to
have access to all instances on our network when using the Nova Network modes of Flat,
FlatDHCP and VLAN Manager. Although there are times where we might want to manually
assign addresses (for example, where we have a limited number of IPs assigned to a tenancy),
the convenience of having this done for you is very beneficial and makes our OpenStack
environment operate closely to how a cloud like Amazon EC2 operates for example.

Getting ready
To begin with, ensure you are logged in to the Controller node. If this was created using
Vagrant you can log into this node using the following command:

vagrant ssh controller

We will also be using the client machine, so log in to your node that has Nova Client
installed. If you haven't created one, the Controller node has this client installed so this
can also be used.

How to do it...
To ensure each of the instances gets a public (floating) IP address assigned to it when it is
launched, carry out the following steps:

1.	 While on our OpenStack API host, run the following command to list any floating
ranges we have assigned:
sudo nova-manage floating list

An example of the output when listing the floating IPs is shown as follows, truncated
for brevity:

None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
…

2.	 The values indicate we have a floating range available for use. Rather than using
client tools to assign addresses to instances, a flag in our /etc/nova/nova.conf
file ensures our instances are always allocated an address:
auto_assign_floating_ip

OpenStack Networking

184

3.	 With this added to our nova.conf configuration file, we restart our nova-network
and nova-compute services, to pick up the change:
sudo restart nova-compute

sudo restart nova-network

4.	 When an instance spawns, it will automatically be assigned a public floating IP
address that we can instantly use to gain access.

How it works...
Instances aren't automatically accessible outside of the OpenStack host unless a public IP
address is assigned to them. Configuring our OpenStack environment so that each instance is
assigned an address on launch makes the instances accessible from outside networks.

Creating a sandbox Network server for
Neutron with VirtualBox and Vagrant

Creating a sandbox server for running the OpenStack Network Neutron services is easy
using VirtualBox and Vagrant. VirtualBox gives us the ability to spin up virtual machines and
networks without affecting the rest of our working environment and is freely available from
http://www.virtualbox.org for Windows, Mac OSX, and Linux. Vagrant allows us to
automate this task, meaning we can spend less time creating our test environments and more
time using OpenStack.

Vagrant is installable using Ubuntu's package management, but for
other Operating Systems visit http://www.vagrantup.com/.
This test environment can then be used for the rest of this chapter.

It is assumed the computer you will be using to run your test environment in has enough
processing power that has hardware virtualization support (for example, Intel VT-X and AMD-V
support) with at least 8 GB RAM. Our nested virtual machines will require virtual RAM, so
more physical RAM will help our virtual machines run much better.

Getting ready
To begin with, ensure that VirtualBox and Vagrant is installed and networking set up as
described in Creating a sandbox environment with VirtualBox and Vagrant recipe of Chapter
1, Keystone OpenStack Identity Service:

Chapter 8

185

How to do it...
To create our sandbox server for running OpenStack Network within VirtualBox we will use
Vagrant to define another virtual machine that allows us to run Open vSwitch and supporting
Neutron services. This virtual machine, that we will refer to as the OpenStack Network node,
will be configured with at least 1 GB RAM, 1 CPU and 20 GB of hard drive space and have four
network interfaces. The first will be a NAT interface that allows our virtual machine to connect
to the network outside of VirtualBox to download packages. The second interface will be the
Management interface of our OpenStack Network host, the third interface will be for our Data
network that Neutron uses for transit of data for the software defined networking, and the
fourth interface will be used for routing outside of our virtual environment.

Carry out the following steps to create the virtual machine with Vagrant that will be used to
run Open vSwitch and Neutron services:

1.	 Edit the file named Vagrantfile created in Creating a sandbox environment with
VirtualBox and Vagrant recipe of Chapter 1, Keystone OpenStack Identity Service and
add the following section between the final two end blocks:

 # Compute VM
 config.vm.define :network do |network_config|
 # Every Vagrant virtual environment requires
 # a box to build off of.
 network_config.vm.box = "precise64"

 network_config.vm.host_name = "network"

 network_config.vm.box_url = "http://files.vagrantup.com/precise64.
box"

 network_config.vm.network :hostonly, "172.16.0.202", :netmask
 => "255.255.0.0"
 network_config.vm.network :hostonly, "10.10.0.202", :netmask
 => "255.255.0.0"
 network_config.vm.network :hostonly, "192.168.0.202", :netmask
 => "255.255.255.0"

 # Customise the VM virtual hardware
 network_config.vm.customize ["modifyvm", :id, "--memory",
 1024]
 network_config.vm.customize ["modifyvm", :id, "--cpus", 1]
 end

OpenStack Networking

186

2.	 We are now ready to power on our network node. We do this by simply running the
following command:

vagrant up network

Congratulations! We have successfully created the VirtualBox virtual
machine running Ubuntu 12.04, which is able to run OpenStack Network.

How it works...
What we have done is created a virtual machine within VirtualBox by defining it in
Vagrant. Vagrant then configures this virtual machine, based on the settings given in the
Vagrantfile configuration file in the directory, which will store and run our VirtualBox
VMs. This file is based on Ruby syntax, but the lines are relatively self-explanatory. We have
specified the following:

ff The hostname is called "network"

ff The VM is based on Precise64, an alias for Ubuntu 12.04 LTS 64-Bit

ff We have specified 1Gb Ram and 1 CPU

ff eth0 is used for NAT, and exists in all our Vagrant spun up instances

ff eth1 is a host-only network address and used for Management of our node

ff eth2 is for inter-communication of network traffic

ff eth3 is used to route to outside of our environment (in a physical environment,
this is used to connect to an external, routeable network). Note that in our Vagrant
environment here we assigned an IP address to this node. The next section removes
this, as it's a requirement for external router networks to not assign an IP, but Vagrant
requires it.

We then launch this VirtualBox VM using Vagrant using the following simple command:

vagrant up network

There's more...
There are a number of virtualization products available that are suitable for trying OpenStack,
for example, VMware Server, VMware Player, and VMware Fusion are equally suitable.

See also
Chapter 11, Highly Available OpenStack

Chapter 8

187

Installing and configuring OVS for Neutron
To create a Software Defined Network layer in OpenStack, we first need to install the software
on our Network node. This node will utilize Open vSwitch as our switch that we can use and
control when defining our networks when we use OpenStack. Open vSwitch, or OVS, is a
production quality, multilayer switch. The following diagram shows the required nodes in our
environment, which includes a Controller node, a Compute node and a Network node. For this
section we are configuring the Network node.

Getting ready
Ensure you are logged onto the Network node and that it has Internet access to allow us to
install the required packages in our environment for running OVS and Neutron. If you created
this node with Vagrant, you can execute the following:

vagrant ssh network

How to do it...
To configure our OpenStack Network node, carry out the following steps:

1.	 When we started our Network node using Vagrant, we had to assign the fourth
interface (eth3) an IP address. We no longer want an IP assigned, but we do require
the interface to be online and listening for use with OVS and Neutron. Instead, we will
use this IP address to assign to our bridge interface after we have created this later
on in this section. Perform the following steps to remove this IP from our interface:
sudo ifconfig eth3 down

sudo ifconfig eth3 0.0.0.0 up

sudo ip link eth3 promisc on

OpenStack Networking

188

On a physical server running Ubuntu, we would configure this in
our /etc/network/interfaces file as follows:

auto eth3

iface eth3 inet manual
 up ip link set $IFACE up
 down ip link set $IFACE down

2.	 We then update the packages installed on the node.
sudo apt-get update

sudo apt-get -y upgrade

3.	 Next, we install the kernel headers package as the installation will compile some new
kernel modules.
sudo apt-get -y install linux-headers-'uname -r'

4.	 Now we need to install some supporting applications and utilities.
sudo apt-get -y install vlan bridge-utils dnsmasq-base \

 dnsmasq-utils

5.	 We are now ready to install Open vSwitch.
sudo apt-get -y install openvswitch-switch \

 openvswitch-datapath-dkms

6.	 After this has installed and configured some kernel modules we can simply start our
OVS service.
sudo service openvswitch-switch start

7.	 Now we will proceed to install the Neutron components that run on this node, which
are the Quantum DHCP Agent, Quantum L3 Agent, the Quantum OVS Plugin, and the
Quantum OVS Plugin Agent.
sudo apt-get -y install quantum-dhcp-agent \

 quantum-l3-agent quantum-plugin-openvswitch \

 quantum-plugin-openvswitch-agent

8.	 With the installation of the required packages complete, we can now configure
our environment. To do this we first configure our OVS switch service. We need to
configure a bridge that we will call br-int. This is the integration bridge that glues
our bridges together within our SDN environment.
sudo ovs-vsctl add-br br-int

Chapter 8

189

9.	 Next, add an external bridge that is used on our external network. This will be used
to route traffic to/from the outside of our environment and onto our SDN network
sudo ovs-vsctl add-br br-ex

sudo ovs-vsctl add-port br-ex eth3

10.	 We now assign the IP address, that was previously assigned to our eth3 interface,
to this bridge:
sudo ifconfig br-ex 192.168.100.202 netmask 255.255.255.0

This address is on the network that we will use for access for
accessing instances within OpenStack. We assigned this range
as 192.168.100.0/24 as described in the Vagrant file:

network_config.vm.network :hostonly,
"192.168.0.202",
 :netmask => "255.255.255.0"

11.	 We need to ensure that we have IP forwarding on within our Network node.
sudo sed -i \

 's/#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/' \

 /etc/sysctl.conf

sudo sysctl -p

12.	 Next, we will edit the Neutron configuration files. In a similar way to configuring other
OpenStack services, the Neutron services have a configuration file and a paste ini
file. The first file to edit will be the /etc/quantum/api-paste.ini to configure
Keystone authentication.

We add the auth and admin lines to the [filter:authtoken] section:

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_
token:filter_factory
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum

OpenStack Networking

190

13.	 After this, we edit two sections of the /etc/quantum/plugins/openvswitch/
ovs_quantum_plugin.ini file.

The first is to configure the database credentials to point to our MySQL installation:

[DATABASE]
sql_connection =
 mysql://quantum:openstack@172.16.0.200/quantum

14.	 Further down the file there is a section called [OVS]. We need to edit this section to
include the following values:
[OVS]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
integration_bridge = br-int
tunnel_bridge = br-tun
local_ip = 172.16.0.202
enable_tunneling = True

15.	 Save this file and then edit the /etc/quantum/metadata_agent.ini file as
follows:
Metadata Agent
echo "[DEFAULT]
auth_url = http://172.16.0.200:35357/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_user = quantum
admin_password = quantum
metadata_proxy_shared_secret = foo
nova_metadata_ip = 172.16.0.200
nova_metadata_port = 8775

16.	 Next, we must ensure that our Neutron server configuration is pointing at the right
RabbitMQ in our environment. Edit /etc/quantum/quantum.conf and locate the
following and edit to suit our environment
rabbit_host = 172.16.0.200

17.	 We need to edit the familiar [keystone_authtoken] section located at the bottom
of the file to match our Keystone environment:
[keystone_authtoken]
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum
signing_dir = /var/lib/quantum/keystone-signing

Chapter 8

191

18.	 The DHCP agent file, /etc/quantum/dhcp_agent.ini needs a value change to
tell Neutron that we are using namespaces to separate our networking. Locate this
and change this value (or insert the new line). This allows all of our networks in our
SDN environment to have a unique namespace to operate in and allows us to have
overlapping IP ranges within our OpenStack Networking environment:
use_namespaces = True

19.	 With this done, we can proceed to edit the /etc/quantum/l3_agent.ini file to
include these additional following values:
auth_url = http://172.16.0.200:35357/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_user = quantum
admin_password = quantum
metadata_ip = 172.16.0.200
metadata_port = 8775
use_namespaces = True

20.	 With our environment and switch configured we can restart the relevant services to
pick up the changes:

sudo service quantum-plugin-openvswitch-agent restart

sudo service quantum-dhcp-agent restart

sudo service quantum-l3-agent restart

sudo service quantum-metadata-agent-restart

How it works...
We have completed and configured a new node in our environment that runs the software
networking components of our SDN environment. This includes the OVS Switch service and
various Neutron components that interact with this and OpenStack through the notion of
plugins. While we have used Open vSwitch in our example, there are also many vendor plugins
that include Nicira and Cisco UCS/Nexus among others. More details on the plugins that
Neutron supports can be found at the following web address https://wiki.openstack.
org/wiki/Neutron.

The first thing we did was configure an interface on this switch node that would serve an
external network. In OpenStack Networking terms, this is called the Provider Network. Outside
of a VirtualBox environment, this would be a publicly routable network that would allow
access to the instances that get created within our SDN environment. This interface is created
without an IP address so that our OpenStack environment can control this by bridging new
networks to it.

OpenStack Networking

192

A number of packages were installed on this Network node. The list of packages that we
specify for installation (excluding dependencies) is as follows:

ff Operating System:
linux-headers-'uname -r'

ff Generic Networking Components:
vlan

bridge-utils

dnsmasq-base

dnsmasq-utils

ff Open vSwitch:
openvswitch-switch

openvswitch-datapath-dkms

ff Neutron:
quantum-dhcp-agent

quantum-l3-agent

quantum-plugin-openvswitch

quantum-plugin-openvswitch-agent

Once we installed our application and service dependencies and started the services, we
configured our environment by assigning a bridge that acts as the integration bridge that
spans our instances with the rest of the network, as well as a bridge to our last interface on
the Provider Network—where traffic flows from the outside in to our instances.

A number of files were configured to connect to our OpenStack cloud using the Identity
(Keystone) services.

An important configuration of how Neutron works with our OVS environment is achieved by
editing the /etc/quantum/plugins/openvswitch/ovs_quantum_plugin.ini file.
Here we describe our SDN environment:

[DATABASE]

sql_connection=mysql://quantum:openstack@172.16.0.200/quantum

Here we configure the Neutron services to use the database we have created in MySQL:

[OVS]

tenant_network_type=gre

Chapter 8

193

We're configuring our networking type to be GRE (Generic Routing Encapsulation) tunnels.
This allows our SDN environment to capture a wide range of protocols over the tunnels we
create, as follows:

tunnel_id_ranges=1:1000

This is defining a range of tunnels that could exist in our environment where each will be
assigned an ID from 1 to 1000 using following command:

network_vlan_ranges =

As we are using tunnel ranges, we explicitly unset the VLAN ranges within our environment:

integration_bridge=br-int

This is the name of the integration bridge:

tunnel_bridge=br-tun

This is the tunnel bridge name that will be present in our environment:

local_ip=172.16.0.202

This is the IP address of our Network node:

enable_tunneling=True

This informs Neutron that we will be using tunneling to provide our software defined
networking.

The service that proxies metadata requests from instances within Neutron to our nova-api
metadata service is the Metadata Agent. Configuration of this service is achieved with the
/etc/quantum/metadata_agent.ini file and describes how this service connects to
Keystone as well as providing a key for the service, as described in the metadata_proxy_
shared_secret = foo line that matches the same random keywork that we will eventually
configure in /etc/nova/nova.conf on our Controller node as follows:

quantum_metadata_proxy_shared_secret=foo

The step that defines the networking plumbing of our Provider Network (the external network)
is achieved by creating another bridge on our node, and this time we assign it the physical
interface that is connecting our Network node to the rest of our network or the Internet. In
this case, we assign this external bridge, br-ex, to the interface eth3. This will allow us to
create a floating IP Neutron network range, and it would accessible from our host machine
running VirtualBox. On a physical server in a datacenter, this interface would be connected to
the network that routes to the rest of our physical servers. The assignment of this network is
described in the Creating an external Neutron network recipe.

OpenStack Networking

194

Installing and configuring the
Neutron API server

The Neutron Service provides an API for our services to access and define our software defined
networking. In our environment, we install the Neutron service on our Controller node. The
following diagram describes the environment we are creating and the nodes that are involved. In
this section we are configuring the services that operate on our Controller node.

Getting ready
Ensure you are logged on to the Controller node. If you created this node with Vagrant, you
can access this with the following command:

vagrant ssh controller

How to do it...
To configure our OpenStack Controller node, carry out the following steps:

1.	 First update the packages installed on the node.
sudo apt-get update

sudo apt-get -y upgrade

2.	 We are now ready to install the Neutron service and the relevant OVS plugin.
sudo apt-get -y install quantum-server \

 quantum-plugin-openvswitch

Chapter 8

195

3.	 We can now configure the relevant configuration files for Neutron. The first
configures Neutron to use Keystone. To do this we edit the /etc/quantum/
api-paste.ini file.
[filter:authtoken] paste.filter_factory = keystone.middleware.
auth_token:filter_factory
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum

4.	 We then edit the /etc/quantum/plugins/openvswitch/ovs_quantum_
plugin.ini file.

The first is to configure the database credentials to point to our MySQL installation:

[DATABASE]
sql_connection =
 mysql://quantum:openstack@172.16.0.200/quantum

5.	 Next, find the section called [OVS]. We need to edit this section to include the
following values:
[OVS]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
integration_bridge = br-int
tunnel_bridge = br-tun
local_ip = # We don't set this on the Controller
enable_tunneling = True

6.	 Then finally we ensure there is a section called [SECURITYGROUP] that we use to
tell Neutron which Security Group Firewall driver to utilize. This allows us to define
Security groups in Neutron and using Nova commands:
[SECURITYGROUP]
Firewall driver for realizing quantum security group
function
firewall_driver =
 quantum.agent.linux.iptables_firewall.
 OVSHybridIptablesFirewallDriver

7.	 We must ensure that our Neutron server configuration is pointing at the right
RabbitMQ in our environment. Edit /etc/quantum/quantum.conf and locate the
following and edit to suit our environment:
rabbit_host = 172.16.0.200

OpenStack Networking

196

8.	 We need to edit the familiar [keystone_authtoken] located at the bottom of the
file to match our Keystone environment:
[keystone_authtoken]
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum
signing_dir = /var/lib/quantum/keystone-signing

9.	 We can now configure the /etc/nova/nova.conf file to tell the OpenStack
Compute components to utilize Neutron. Add the following lines under [Default] to
our /etc/nova/nova.conf file:
Network settings
network_api_class=nova.network.quantumv2.api.API
quantum_url=http://172.16.0.200:9696/
quantum_auth_strategy=keystone
quantum_admin_tenant_name=service
quantum_admin_username=quantum
quantum_admin_password=quantum
quantum_admin_auth_url=http://172.16.0.200:35357/v2.0
libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridg
 eDriver
linuxnet_interface_driver=nova.network.linux_net.LinuxOVSInter
 faceDriver
firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDri
 ver
service_quantum_metadata_proxy=true
quantum_metadata_proxy_shared_secret=foo

10.	 Restart our Neutron services running on this node to pick up the changes:
sudo service quantum-server restart

11.	 Restart our Nova services running on this node to pick up the changes in the /etc/
nova/nova.conf file.

ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while
 read S; do sudo stop $S; sudo start $S; done

Chapter 8

197

How it works...
Configuring our Neutron service on the Controller node is very straightforward. We install a
couple of extra packages:

Neutron:
quantum-server
quantum-plugin-openvswitch-agent

Once installed, we utilize the same /etc/quantum/plugins/openvswitch/ovs_
quantum_plugin.ini file with only one difference—the local_ip setting is omitted on the
server—it is only used on agent nodes (Compute and Network).

Lastly, we configure /etc/nova/nova.conf—the all important configuration file for our
OpenStack Compute services.

network_api_class=nova.network.quantumv2.api.API

Tells our OpenStack Compute service to use Neutron networking.

quantum_url=http://172.16.0.200:9696/

This is address of our Neutron Server API (running on our Controller node).

quantum_auth_strategy=keystone

This tells Neutron to utilize the OpenStack Identity and Authentication service, Keystone:

quantum_admin_tenant_name=service

The name of the service tenant in Keystone.

quantum_admin_username=quantum

The username that Neutron uses to authenticate with in Keystone

quantum_admin_password=quantum

The password that Neutron uses to authenticate with in Keystone.

quantum_admin_auth_url=http://172.16.0.200:35357/v2.0

The address of our Keystone service.

libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridge

 Driver

OpenStack Networking

198

This tells Libvirt to use the OVS Bridge driver.

linuxnet_interface_driver=nova.network.linux_net.LinuxOVS
 InterfaceDriver

This is the driver used to create Ethernet devices on our Linux hosts.

firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver

This is the driver to use when managing the firewalls.

service_quantum_metadata_proxy=true

This allows us to utilize the meta-data proxy service that passes requests from Neutron to the
Nova-API service.

quantum_metadata_proxy_shared_secret=foo

In order to utilize the proxy service, we set a random key, in this case too, that must match on
all nodes running this service to ensure a level of security when passing proxy requests.

Configuring Compute nodes for Neutron
With the network node configured, there are some services that need to run our Compute
nodes. The services that run our compute node for Neutron are nova-compute, quantum-
ovs-plugin-agent, and openvswitch-server.

Chapter 8

199

Getting ready
Ensure you are logged on to the compute node in our environment. If you created this using
Vagrant, you can issue the following command:

vagrant ssh compute

How to do it...
To configure our OpenStack Compute node, carry out the following steps:

1.	 First update the packages installed on the node:
sudo apt-get update

sudo apt-get -y upgrade

2.	 We then install the kernel headers package as the installation will compile some new
kernel modules:
sudo apt-get -y install linux-headers-'uname -r'

3.	 We now need to install some supporting applications and utilities:
sudo apt-get -y install vlan bridge-utils

4.	 We are now ready to install Open vSwitch which also runs on our Compute node:
sudo apt-get -y install openvswitch-switch \

 openvswitch-datapath-dkms

5.	 After this has installed and configured some kernel modules we can simply start our
OVS service:
sudo service openvswitch-switch start

6.	 We can now proceed to install the Neutron plugin component that run on this node:
sudo apt-get -y install quantum-plugin-openvswitch-agent

7.	 With the installation of the required packages complete, we can now configure
our environment. To do this we first configure our OVS switch service. We need to
configure a bridge that we will call br-int. This is the integration bridge that glues
our VM networks together within our SDN environment.
sudo ovs-vsctl add-br br-int

8.	 We need to ensure that we have IP forwarding on within our Network node:
sudo sed -i \

 's/#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/' \

 /etc/sysctl.conf

sudo sysctl -p

OpenStack Networking

200

9.	 We can now configure the relevant configuration files to get our Compute node
working with the Neutron services. We first edit the /etc/quantum/plugins/
openvswitch/ovs_quantum_plugin.ini file.

The first is to configure the database credentials to point to our MySQL installation:

[DATABASE]
sql_connection =
 mysql://quantum:openstack@172.16.0.200/quantum

10.	 Further down the file, we will see also a section called [OVS]. We need to edit this
section to include the following values:
[OVS]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
integration_bridge = br-int
tunnel_bridge = br-tun
local_ip = 172.16.0.201
enable_tunneling = True

In a similar way to configuring other OpenStack services, the Neutron services have a paste ini
file. Edit /etc/quantum/api-paste.ini to configure Keystone authentication. We add the
auth and admin lines to the [filter:authtoken] section:

[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_
factory
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum

1.	 We must ensure that our Neutron server configuration is pointing at the right
RabbitMQ in our environment. Edit /etc/quantum/quantum.conf and locate the
following and edit to suit our environment:
rabbit_host = 172.16.0.200

Chapter 8

201

2.	 We need to edit the familiar [keystone_authtoken] located at the bottom of the
file to match our Keystone environment:
[keystone_authtoken]
auth_host = 172.16.0.200
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = quantum
admin_password = quantum
signing_dir = /var/lib/quantum/keystone-signing

3.	 We can now configure the /etc/nova/nova.conf file to tell the OpenStack
Compute components to utilize Neutron. Add the following lines under [Default] to
our /etc/nova/nova.conf configuration:
Network settings
network_api_class=nova.network.quantumv2.api.API
quantum_url=http://172.16.0.200:9696/ quantum_auth_
strategy=keystone
quantum_admin_tenant_name=service
quantum_admin_username=quantum
quantum_admin_password=quantum
quantum_admin_auth_url=http://172.16.0.200:35357/v2.0
libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybrid
 OVSBridgeDriver
linuxnet_interface_driver=nova.network.linux_net.Linux
 OVSInterfaceDriver
firewall_driver=nova.virt.libvirt.firewall.Iptables
 FirewallDriver

4.	 Restart our nova services running on this node to pick up the changes in the /etc/
nova/nova.conf file:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while read
S; do sudo stop $S; sudo start $S; done

How it works...
Configuring our OpenStack Compute node to use Neutron is straightforward. We follow a
similar set of initial steps that were conducted on our Network node, which involves installing
a number of packages as follows:

ff Operating system:
�� linux-headers-'uname -r'

OpenStack Networking

202

ff Generic networking components:

�� vlan

�� bridge-utils

ff Open vSwitch:

�� openvswitch-switch

�� openvswitch-datapath-dkms

ff Neutron:

�� quantum-plugin-openvswitch-agent

Once installed, we also configure the Open vSwitch service running on our Compute node and
configure the same integration bridge, br-int.

We utilize the same /etc/quantum/plugins/openvswitch/ovs_quantum_plugin.
ini file with only one difference—the local_ip setting is the IP address of the Compute
node that we are configuring.

Lastly, we configure /etc/nova/nova.conf— all the important configuration file for our
OpenStack Compute services.

network_api_class=nova.network.quantumv2.api.API

The preceding code tells our OpenStack Compute service to use Neutron networking.

quantum_url=http://172.16.0.200:9696/

The preceding is the address of our Neutron server API (running on our Controller node).

quantum_auth_strategy=keystone

This tells Neutron to utilize the OpenStack identity and authentication service, Keystone.

quantum_admin_tenant_name=service

The name of the service tenant in Keystone.

quantum_admin_username=quantum

The username that Neutron uses to authenticate with in Keystone.

quantum_admin_password=quantum

The password that Neutron uses to authenticate with in Keystone.

quantum_admin_auth_url=http://172.16.0.200:35357/v2.0

Chapter 8

203

The address of our Keystone service.

libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridge
 Driver

This tells Libvirt to use the OVS Bridge driver.

linuxnet_interface_driver=nova.network.linux_net.LinuxOVS
 InterfaceDriver

This is the driver used to create Ethernet devices on our Linux hosts.

firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver

This is the driver to use when managing the firewalls.

Creating a Neutron network
Now that we have our OpenStack network configured for Neutron, we can now use this to
create networks within our OpenStack environment. Networks are created per tenant and
once created we can use these to connect to our VMs. Neutron networks can either be private
or shared. When a Neutron network is private, only the operators and instances of that tenant
can utilize these networks. When they are marked as shared, all instances can attach to this
shared network so it is important to utilize this shared network feature carefully to ensure
security between tenants. When using shared networks, we implement Security Group rules to
ensure traffic flow matches our security requirements.

Getting ready
Ensure you are logged on to the controller node in our environment. If you created this using
Vagrant, you can issue the following command:

vagrant ssh controller

Ensure you have set the following credentials set:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

OpenStack Networking

204

How to do it...
To create a private Neutron network for a particular tenant, follow these steps:

1.	 We first need to get the tenant ID that we can reference when creating the network
information for that particular tenant. To do so issue the following:
TENANT_ID=$(keystone tenant-list \

| awk '/\ cookbook\ / {print $2}')

2.	 We then use this value to create the layer 2 network for this tenant as follows:
quantum net-create \

 --tenant-id ${TENANT_ID} \

 cookbookNet

3.	 With the network in place, we now allocate a subnet using CIDR format
(10.200.0.0/24) to this network:
quantum subnet-create \

 --tenant-id ${TENANT_ID} \

 --name cookbookSubnet \

 cookbookNet \

 10.200.0.0/24

4.	 We will now create a router on this network that we can use to act as the default
gateway for our instances. Adding routers is optional—they are a design consideration,
allowing you to route from one network that we create to another. This option avoids
multi-homing instances with multiple interfaces and networks. This router will be
used to allow us to assign an IP from our physical host range allowing us access to
our instances:
quantum router-create \

 --tenant-id ${TENANT_ID} \

 cookbookRouter

5.	 We add this router to our subnet:
quantum router-interface-add \

 cookbookRouter \

 cookbookSubnet

6.	 Boot an instance and the address assigned to it will come from our new subnet:
nova boot \

 --flavor 1 \

 --image 5047209f-9545-4d2c-9f16-720f1d7197ef \

 --key_name demo \

 test1

Chapter 8

205

7.	 At this point, although our instance receives an IP address, it is only accessible
from other instances on that same network, and from our network host only. To test
access, providing a Security Group rule has the allowed access (for example, ability to
ping and SSH from any network), we can issue the following.

Log on to the network node. If this was created with Vagrant, issue the following from
our host computer:

vagrant ssh network

8.	 Once on the Network node, we can interrogate what is known as Network
namespaces:
sudo ip netns list

This returns information as follows:

qdhcp-36169ae7-476e-487c-9d9d-e10ad3c94a23
qrouter-f0a5c988-6eb2-4593-8b15-90896fd55d3a

9.	 The formats of these namespaces are qdhcp-network-uuid and qrouter-
router-uuid and these match the output of the following commands (perform
this on the controller host where our environment has been set to view our
OpenStack information):
quantum net-list

This brings back information as the following screenshot:

quantum router-list

And the preceding command brings back information as the following screesnhot:

10.	 We view which IP our instance has been assigned using the familiar nova list
command as follows:
nova list

OpenStack Networking

206

This brings back information as the following screenshot:

11.	 To access our instance, that has an IP address on our cookbookNet we perform this
via the matching network namespace as follows:

sudo ip netns exec qdhcp-36169ae7-476e-487c-9d9d-e10ad3c94a23 \

 ping 10.200.0.2

How it works...
What we have done here is created a network with a defined subnet that our VMs utilize when
they are started up. The steps to create this are as follows:

1.	 Create network as follows:
quantum net-create \

 --tenant-id TENANT_ID \

 NAME_OF_NETWORK

2.	 Create subnet as follows:

quantum subnet-create \

 --tenant-id TENANT_ID \

 --name NAME_OF_SUBNET \

 NAME_OF_NETWORK \

 CIDR

Routers are optional on networks and the function is to route traffic from one subnet to
another. In a Neutron Software Defined Network, this is no different. Layer 3 (L3) Routers
allow you to configure gateways and routes to other networks on-demand. If we only
require our instances to communicate between each other on the same subnet, there is no
requirement to have a router as there would be no other network required to be routed to or
from. The syntax for creating routers is as follows.

Adding a router is optional:

quantum router-create \

 --tenant-id TENANT_ID \

 NAME_OF_ROUTER

Chapter 8

207

Add the (optional) router to our Subnet (used to allow routes from one network (physical or
software defined):

quantum router-interface-add \

 ROUTER_NAME \

 SUBNET_NAME

With our network in place, when we start up our VM up now, as no other networks currently
exist, it will use this network to get its IP address when it gets created.

At this moment, though, this instance has an IP assigned in our Neutron environment that
is only accessible via our Network node using namespaces. Namespaces provides further
isolation between our ranges at the Linux network stack level. By utilizing namespaces it
allows us to have overlapping IP ranges so that users of our tenants can assign arbitrary
ranges without any conflicts with matching ranges in another tenant. To troubleshoot our
instances at this point, we log into our network node that has the namespace information and
access our instance through that particular namespace as follows:

sudo ip netns exec qdhcp-network-uuid {normal Bash command to run}

Deleting a Neutron network
To remove a Neutron network, we follow a similar set of steps to how we create the network.

Getting ready
Ensure you are logged on to the controller node in our environment. If you created this using
Vagrant, you can issue the following command:

vagrant ssh controller

Ensure you have set the following credentials:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

OpenStack Networking

208

How to do it...
To create a Neutron network for a particular tenant, follow these steps:

1.	 We first need to get the tenant ID that we can reference when creating the network
information for that particular tenant. To do so issue the following:
TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

2.	 We can now list the networks for this tenant. We do this with the following command:
quantum net-list

This produces output as the following screenshot:

3.	 And to list the subnets, we issue a similar command:
quantum subnet-list

This produces output as the following screenshot:

4.	 To delete a networks and subnets, we must first ensure that there are no instances
and services using the networks and subnets we are about to delete. To check what
ports are connected to our network we query the port list in Neutron as follows:
quantum port-list

This produces output as the following screenshot:

5.	 We can also look at the running instances and the networks that they are attached to
by issuing the following command:
nova list

Chapter 8

209

This produces output as the following screenshot:

Here we see we have an instance on the network, cookbook_network_1 that we
want to delete.

6.	 We need to stop any instances that are running on this network, for example:
nova delete test1

7.	 With any instances now stopped on our network that we want to remove we can now
remove any router interfaces attached to this network with the following commands:
ROUTER_ID=$(quantum router-list \

 | awk '/\ cookbook_router_1\ / {print $2}')

SUBNET_ID=$(quantum subnet-list \

 | awk '/\ cookbook_subnet_1\ / {print $2}')

quantum router-interface-delete \

 ${ROUTER_ID} \

 ${SUBNET_ID}

8.	 With the router interface removed, we can proceed to delete the subnet as follows:
quantum subnet-delete cookbook_subnet_1

9.	 With the subnet remove, we can delete the network as follows:

quantum net-delete cookbook_network_1

OpenStack Networking

210

How it works...
What we have done here is run through a series of steps to remove a network. This involves
first removing any (virtual) devices attached to this network such as instances and routers,
before removing the subnet that has been attached to that network, then lastly removing the
underlying network itself.

ff Listing networks:
quantum net-list

ff Listing Subnets:
quantum subnet-list

ff Listing used Neutron Ports:
quantum port-list

ff Removing a router interface from a subnet:
quantum router-interface-delete \

 ROUTER_ID \

 SUBNET_ID

ff Removing a subnet:
quantum subnet-delete NAME_OF_SUBNET

ff Removing a subnet:

quantum subnet-delete NAME_OF_NETWORK

Creating an external Neutron network
In Neutron, it is easy to create many private networks that allow inter-communication between
your instances. To allow access to these though, we must create a router on the Provider
Network (an external network) that is routed into our OpenStack environment. This provider
network allows us to allocate floating addresses to our instances.

For this, we will be utilizing our fourth VirtualBox network interface. In a physical environment,
this interface would go to a router that is routed to the Internet.

Chapter 8

211

Getting ready
Ensure you are logged on to the controller node in our environment. If you created this using
Vagrant, you can issue the following command:

vagrant ssh controller

Ensure you have set the following credentials set:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

export OS_NO_CACHE=1

How to do it...
To create an external router on our Neutron network for a particular tenant we need to have
tenant admin privileges. We will first create a public network in our admin tenant and then
attach this to a tenant's router that requires external access to our instances. This will be
achieved with assignment of a floating IP to the instance.

Once our environment has been set correctly with admin privileges, follow these steps:

1.	 We first need to get the service tenant ID that we can reference when creating the
public shared network. To do so, issue the following:
ADMIN_TENANT_ID=$(keystone tenant-list \

 | awk '/\ service\ / {print $2}')

The use of the service tenant is not a strict requirement.
We are referring to a tenant outside of all our private tenants
that is under the control of our admin user only.

2.	 We can now create a new public network, that we will call floatingNet, to provide
our external routing capability. To do this we issue the following command:
quantum net-create \

 --tenant-id ${ADMIN_TENANT_ID} \

 --router:external=True \

 floatingNet

OpenStack Networking

212

3.	 We then create our external/floating range on this network. In this example, this
external subnet is 192.168.100.0/24. To do this we specify a range of address
that we will manually assign to instances as floating address, ensuring that the
allocation pool (the list of allowed IPs) does not conflict with any IPs used currently
in our physical environment:
quantum subnet-create \

 --tenant-id ${ADMIN_TENANT_ID} \

 --name floatingSubnet \

 --allocation-pool \

 start=192.168.100.10,end=192.168.100.20 \

 --enable_dhcp=False \

 floatingNet \

 192.168.100.0/24

4.	 We now need to set a gateway on our Cookbook router (described in step 4 of the
Creating a Neutron network recipe,) to this floating network
quantum router-gateway-set \

 cookbookRouter \

 floatingNet

5.	 With the networking elements complete, we can now utilize this floating network. To
do so, we assign a floating IP to our running instance, so first we need to see what IP
has been assigned to our instance on the cookbookNet network by issuing a nova list
command:
nova list

6.	 This brings back information as the following screenshot:

7.	 We also gather some information about our routers and Neutron network ports used
in our environment. To collect information about our cookbookRouter issue the
following command:
quantum router-show cookbookRouter

Chapter 8

213

This produces output like the following. The information we need is the router ID and
the Network ID:

8.	 We use this Router ID to interrogate the port in use on this router:
quantum port-list -- \

 --router_id=f0a5c988-6eb2-4593-8b15-90896fd55d3a

This produces output like the following and the information we need will match the IP
address listed in the nova list command. In this case, we need the port ID matching
the IP address 10.200.0.2 as this is assigned to our instance:

9.	 To assign a floating IP to the instance attached to this port, we issue the following
command which creates a new floating IP for our use and attaches it:
quantum floatingip-create \

 --port_id 5f1f68a4-2af2-4528-934d-f7f52ac5b3d3 \

 213fedde-ae5e-4396-9754-cb757cba25ea

OpenStack Networking

214

This produces output like the following:

10.	 The result
11.	 of this is that we are now able to access our instance using the assigned Floating

IP address of 192.168.100.11, that previously only had limited access from our
Network node:

How it works...
What we have done here is created a network that allows us to assign floating addresses to
our instances, which are accessible from this network subnet. This subnet would be one that is
routable from the rest of the network outside of OpenStack, or public address space directly on
the Internet. To do this we first create a network in an admin tenant that can have a gateway set
by using the --router:external=True flag to our quantum net-create command:

quantum net-create \

 --tenant-id ADMIN_TENANT_ID \

 --router:external=True \

 NAME_OF_EXTERNAL_NETWORK

Chapter 8

215

As we will be configuring addresses manually to allow us to assign floating IP addresses to
instances, we specify a subnet where we define the range of IP addresses but disable DHCP:

quantum subnet-create \

 --tenant-id ADMIN_TENANT_ID \

 --name NAME_OF_SUBNET \

 --allocation-pool start=IP_RANGE_START,end=IP_RANGE_END \

 --enable_dhcp=False \

 NAME_OF_EXTERNAL_NETWORK \

 SUBNET_CIDR

We then assign a router gateway to the network by issuing the following command on an
existing router on our network. This router then provides the appropriate NAT when we assign
this to an instance on the private network connected to that router:

quantum router-gateway-set \

 ROUTER_NAME \

 EXTERNAL_NETWORK_NAME

Once configured, we can now allocate a floating IP address from this new range to our running
instance. To do this we run the following set of commands:

nova list

and get the IP address of our running instance

quantum router-show ROUTER_NAME

to give us the router ID

quantum port-list -- \

 --router_id=ROUTER_ID

to display information about connected instances and devices to our router. We use the ID
that matches the IP of our instance.

quantum floatingip-create \

 --port_id INSTANCE_PORT_ID \

 FLOATING_NETWORK_ID

To allocate an IP from our floating IP range to the instance running on that port.

At this point we are able to access this instance from our physical network on this floating
IP address.

9
Using OpenStack

Dashboard

In this chapter, we will cover:

ff Installing OpenStack Dashboard

ff Using OpenStack Dashboard for key management

ff Using OpenStack Dashboard to manage Neutron networks

ff Using OpenStack Dashboard for security group management

ff Using OpenStack Dashboard to launch instances

ff Using OpenStack Dashboard to terminate instances

ff Using OpenStack Dashboard for connecting to instances using VNC

ff Using OpenStack Dashboard to add new tenants

ff Using OpenStack Dashboard for user management

Introduction
Managing our OpenStack environment through a command-line interface allows us complete
control of our cloud environment, but having a GUI that operators and administrators can
use to manage their environments and instances makes this process easier. OpenStack
Dashboard, known as Horizon, provides this GUI and is a Web service that runs from an
Apache installation, using Python's Web Service Gateway Interface (WSGI) and Django, a
rapid development Web framework.

With OpenStack Dashboard installed, we can manage all the core components of our
OpenStack environment.

Using OpenStack Dashboard

218

Installing OpenStack Dashboard
Installation of OpenStack Dashboard is a simple and straightforward process using Ubuntu's
package repository.

Getting ready
Ensure that you are logged in to the OpenStack Controller Node. If you use Vagrant to
create this as described in Creating a sandbox environment using VirtualBox and Vagrant
recipe of Chapter 1, Keystone OpenStack Identity Service, we can access this with the
following command:

vagrant ssh controller

How to do it...
To install OpenStack Dashboard, we simply install the required packages and dependencies
by following the ensuing steps:

1.	 Install the required packages as follows:
sudo apt-get update

sudo apt-get -y install openstack-dashboard novnc \

 nova-consoleauth nova-console memcached

2.	 We can configure OpenStack Dashboard by editing the /etc/openstack-
dashboard/local_settings.py file, thus:
OPENSTACK_HOST = "172.16.0.200"
OPENSTACK_KEYSTONE_URL = "http://%s:5000/v2.0" % OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "Member"

3.	 Now we need to configure OpenStack Compute to use our VNC proxy service that can
be used through our OpenStack Dashboard interface. To do so, add the following
lines to /etc/nova/nova.conf:
novnc_enabled=true
novncproxy_base_url=http://172.16.0.200:6080/vnc_auto.html
vncserver_proxyclient_address=172.16.0.200
vncserver_listen=172.16.0.200

Chapter 9

219

4.	 Restart nova-api to pick up the changes:

sudo restart nova-api

sudo restart nova-compute

sudo service apache2 restart

Installation of OpenStack Dashboard under Ubuntu gives a slightly different
look and feel than a stock installation of Dashboard. The functions remain
the same, although Ubuntu adds an additional feature to allow the user to
download environment settings for Canonicals' orchestration tool, Juju. To
remove the Ubuntu theme execute the following:
sudo dpkg --purge openstack-dashboard-ubuntu-theme

How it works...
Installation of OpenStack Dashboard, Horizon, is simple when using Ubuntu's package
repository. As it uses the Python RAD Web environment, Django, and WSGI, OpenStack
Dashboard can run under Apache. So, to pick up our changes, we restart our Apache 2 service.

We also include the VNC Proxy service. It provides us with a great feature to access our
instances over the network, through the Web interface.

For the remainder of this chapter the screenshots show the standard OpenStack interface
after the removal of the Ubuntu theme.

Using OpenStack Dashboard for
key management

SSH keypairs allow users to connect to our Linux instances without requiring to input
passwords and is the default access mechanism for almost all Linux images that you will use
for OpenStack. Users manage their own keypairs through OpenStack Dashboard. Usually, this
is the first task a new user has to do when given access to our OpenStack environment.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user
created in Adding Users recipe of Chapter 1, Keystone OpenStack Identity Service,
with the password openstack.

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Using OpenStack Dashboard

220

How to do it...
Management of the logged-in user's keypairs is achieved with the steps discussed as in the
following sections:

Adding keypairs
Keypairs can be added by performing the following steps:

1.	 A new keypair can be added to our system by clicking on the Access & Security tab:

2.	 We will now see a screen allowing access to security settings and keypair
management. Under the Keypairs tab, there will be a list of valid keypairs that we can
use when launching and accessing our instances. To create a new keypair, click on
the Create Keypair button:

3.	 On the Create Keypair screen, type in a meaningful name (for example, demo) ensuring
there are no spaces in the name, and then click on the Create Keypair button:

Chapter 9

221

4.	 Once the keypair is created, we will be asked to save the private key portion of our
keypair on the disk.

A private SSH key cannot be recreated, so keep this safe
and store it safely and appropriately on the filesystem

5.	 Click on the Access & Security tab to return to our list of keypairs. We will now see
the newly created keypair listed. When launching instances, we can select this new
keypair and gain access to it only by using the private key that we have stored locally:

Deleting keypairs
Keypairs can be deleted by performing the following steps:

1.	 When keypairs are no longer required, we can delete them from our OpenStack
environment. To do so, click on the Access & Security tab on the left of our screen.

Using OpenStack Dashboard

222

2.	 We will then be presented with a screen allowing access to security settings and
keypair management. Under Keypairs, there will be a list of keypairs that we can use
to access our instances. To delete a keypair from our system, click on the Delete
Keypair button for the keypair that we want to delete:

3.	 We will be presented with a confirmation dialog box:

Once we click on the Delete Keypair button, the keypair will be deleted.

Importing keypairs
If you have your own keypairs that you use to access other systems, these can be imported
into our OpenStack environment so you can continue to use them for accessing instances
within our OpenStack Compute environment. To import keypairs, perform the following steps:

1.	 We can import keypairs that have been created in our traditional Linux-based and
Unix-based environments into our OpenStack setup. If you don't have one already, run
the following from your Linux-based or other Unix-based host.
ssh-keygen -t rsa -N "" -f id_rsa

2.	 This will produce the following two files on our client:

�� .ssh/id_rsa

�� .ssh/id_rsa.pub

3.	 The .ssh/id_rsa file is our private key and has to be protected, as it is the only key
that matches the public portion of the keypair, .ssh/id_rsa.pub.

Chapter 9

223

4.	 We can import this public key to use in our OpenStack environment, so that when an
instance is launched, the public key is inserted into our running instance. To import
the public key, ensure that you're at the Access & Security screen, and then under
Keypairs, click on the Import Keypair button:

5.	 We are presented with a screen that asks us to name our keypair and paste the
contents of our public key. So name the keypair, and then copy and paste the
contents of the public key into the space—for example, the contents of .ssh/id_
rsa.pub. Once entered, click on the Import Keypair button:

6.	 Once completed, we see the list of keypairs available for that user, including our
imported keypair:

Using OpenStack Dashboard

224

How it works...
Keypair management is important, as it provides a consistent and secure approach for
accessing our running instances. Allowing the user to create, delete, and import keypairs to
use within their tenants allows them to create secure systems.

The OpenStack Dashboard allows a user to create keypairs easily. The user must ensure,
though, that the private key that he/she downloads is kept secure.

While deleting a keypair is simple, the user must remember that deleted keypairs which
are associated with running instances will remove access to the running system. Every
keypair created is unique regardless of the name. The name is simply a label, but the unique
fingerprint of the key is required and cannot be recreated.

Importing keypairs has the advantage that we can use our existing secure keypairs that
we have been using outside of OpenStack within our new private cloud environment. This
provides a consistent user experience when moving from one environment to another.

Using OpenStack Dashboard to manage
Neutron networks

The OpenStack Dashboard has the ability to view, create and edit Neutron networks, which
makes managing complex software defined networks much easier. Certain functions, such as
creating shared networks and provider routers require a user to be logged into the OpenStack
Dashboard as a user with admin privileges, but any user can create private networks. To
help with managing complex software defined networks, the OpenStack Dashboard provides
automatically updating network topography.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user created
in Adding users recipe of Chapter 1, Keystone OpenStack Identity Service, with the
password openstack.

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Chapter 9

225

How to do it...

Creating networks
To create a private network for a logged in user, carry out the following steps:

1.	 To manage networks within our OpenStack Dashboard, select the Networks tab as
shown in the following screenshot:

2.	 When this has been selected we will be presented with a list of networks that we can
assign to our instances:

3.	 To create a new network, click the Create Network button.

4.	 We are presented with a dialog box that first asks us to name our network:

Using OpenStack Dashboard

226

5.	 After choosing a name, and keeping the Admin State checkbox selected (which
means our network will be on and available for instances to connect to) we then
assign a subnet to it by selecting the Subnet tab:

6.	 After filling in details for our subnet, we select the Subnet Detail tab that allows us to
configure details such as DHCP range, DNS, and any additional routes we want when
a user chooses that network:

Chapter 9

227

7.	 After filling in all the details, clicking on the Create button makes this available to
users of our tenant and returns us back to the list of available networks:

Deleting networks
To delete a private network for a logged in user, carry out the following steps:

1.	 To manage networks within our OpenStack Dashboard, select the Networks tab
as shown in the following screenshot:

2.	 When this has been selected we will be presented with a list of networks that we can
assign to our instances:

Using OpenStack Dashboard

228

3.	 To delete a network, select the checkbox next to the name of the network we want to
delete then click on the Delete Networks button.

4.	 We will be presented with a dialog box asking us to confirm the deletion:

5.	 Clicking on the Delete Networks button will remove that network and return us to the
list of available networks.

You can only remove a network that has no instances
attached to it. You will be warned that this isn't allowed
if there are instances still attached to that network.

Viewing networks
The OpenStack Dashboard gives users and administrators the ability to view the topography of
our environment. To view the topography carry out the following:

1.	 To manage networks within our OpenStack Dashboard, select the Networks tab as in
the following screenshot:

Chapter 9

229

2.	 Clicking on the Network Topology tab brings back a rich interface that gives an
overview of our networks and instances attached to them as follows:

3.	 From this interface we can click on various parts of this interface such as the
networks (which takes us to the manage network interface), the instances (which
takes us to the instances interface) as well as being able to create networks, routers,
and launch new instances.

How it works...
The ability to view and edit Neutron networks is a new feature in the Grizzly release of
OpenStack. Managing Neutron networks can be quite complicated, but having a visual aid
such as the one provided by the OpenStack Dashboard makes this much easier.

As an administrator (a user with the admin role), you can create shared networks. The same
process applies in the preceding recipes, but you are presented with an extra option to allow
any created networks to be seen by all tenants.

Using OpenStack Dashboard

230

Using OpenStack Dashboard for security
group management

Security groups are network rules that allow instances in one tenant (project) be kept
separate from other instances in another. Managing security group rules for our OpenStack
instances is done as simply as possible with OpenStack Dashboard.

As described in Creating tenants recipe of Chapter 1 Keystone OpenStack
Identity Service, projects and tenants are used interchangeably and refer
to the same thing. Under the OpenStack Dashboard, tenants are referred
to as projects whereas in Keystone projects are referred to as tenants.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user created
in Adding users recipe of Chapter 1, Keystone OpenStack Identity Service, with the
password openstack.

How to do it...
To administer security groups under OpenStack Dashboard, carry out the steps discussed in
the following sections:

Creating a security group
To create a security group, perform the following steps:

1.	 A new security group is added to our system by using the Access & Security tab, so
click on it:

http://172.16.0.200/horizon

Chapter 9

231

2.	 Next we see a screen allowing access to security settings and manage keypairs.
Under Security Groups, there will be a list of security groups that can be used when
we launch our instances. To create a new security group, click on the Create Security
Group button:

3.	 We are asked to name the security group and provide a description. The name cannot
contain spaces:

4.	 Once a new security group is created, the list of available security groups will appear
on screen. From here we are able to add new network security rules to the new
security group.

Editing security groups to add and remove rules
To add and remove rules, security groups can be edited by performing the following steps:

1.	 When we have created a new security group, or wish to modify the rules in an
existing security group, we can click on the Edit Rules button for that particular
security group:

Using OpenStack Dashboard

232

2.	 We then click on the Edit Rules button, which takes us to a screen that lists any
existing rules as well as enabling us to add new rules to this group:

3.	 To add a rule to our new security group we click on the Add Rule button. This allows
us to create rules based on three different protocol types: ICMP, TCP, and UDP. As an
example, we will add in a security group rule that allows HTTP and HTTPS access from
anywhere. To do this, we choose the following:

Chapter 9

233

4.	 When we click on the Add button, we are returned to the list of rules now associated
with our security group. Repeat the previous step until all the rules related to our
security group have been configured.

5.	 Note that we can remove rules from here, too. Simply select the rule that we
no longer require and click on the Delete Rule button. We are asked to confirm
this removal.

Deleting security groups
Security groups can be deleted by performing the following steps:

1.	 Security groups are deleted by selecting the security group that we want to remove
and clicking on the Delete Security Groups button:

2.	 You will be asked to confirm this. Clicking on OK, removes the security group and
associated access rules.

You will not be able to remove a security group while an
instance with that assigned security group is running.

Using OpenStack Dashboard

234

How it works...
Security groups are important to our OpenStack environment, as they provide a consistent
and secure approach for accessing our running instances. By allowing the users to create,
delete, and amend security groups to use within their tenants allows them to create secure
environments. Rules within a security group are "deny by default" meaning that if there is no
rule for that particular protocol, no traffic for that protocol can access the running instance
with that assigned security group.

Security groups are associated with instances on creation, so we can't add a new security
group to a running instance. We can, however, modify the rules assigned to a running
instance. For example, suppose an instance was launched with only the default security
group. The default security group that we have set up, only has TCP port 22 accessible and
the ability to ping the instance. If we require access to TCP port 80, we either have to add this
rule to the default security group or re-launch the instance with a new security assigned to it,
to allow TCP port 80.

Modifications to security groups take effect immediately, and
any instance assigned with that security group will have those
new rules associated with it.

Also, be aware that currently, the OpenStack Dashboard for
the Grizzly release has a bug whereby rules created using
the Neutron CLI don't display correctly within the dashboard;
the dashboard enumerates security groups by name, where
Neutron utilizes the associated UUIDs. The effect is that in
Neutron you can create multiple rules using the same display
name, but the OpenStack Dashboard will only display one
of them, which could cause confusion when it comes to
troubleshooting access to instances.

Chapter 9

235

Using OpenStack Dashboard to
launch instances

Launching instances is easily done, using the OpenStack Dashboard. We simply select our
chosen image, choose the size of the instance, and then launch it.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo
user created in Adding users of Chapter 1, Keystone OpenStack Identity Service,
with the password openstack.

How to do it...
To launch an instance by using the OpenStack Dashboard interface, carry out the
following steps:

1.	 Navigate to the Images & Snapshots tab and select an appropriate image to launch,
for example, the ubuntu 12.04 x86_64 server image:

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Using OpenStack Dashboard

236

2.	 Click on the Launch button under the Actions column of the image to be launched.

3.	 A dialog box appears requesting a name for the instance (for example, horizon1).
Choose an instance type of m1.tiny:

4.	 Next choose the Access & Security tab and choose the keypair and security groups
for this image as shown in the following screenshot:

Chapter 9

237

If you haven't created a keypair you can click on the
+ button and import a key from this dialog box.

5.	 With Neutron configured in our environment, selecting the Networking tab allows us
to choose the networks that our instance will be attached to by dragging the networks
listed under Available networks into the Selected Networks box:

6.	 Once selected, we can click on the Launch Instance button.

7.	 We will be returned to the Instances & Volumes tab that shows the instance in a
Build status, which will eventually change to Active:

If the display hasn't refreshed, click on the Instances tab
to refresh the information manually.

Using OpenStack Dashboard

238

How it works...
Launching instances from Horizon—the OpenStack Dashboard—is done in two stages:

1.	 Selecting the appropriate image from the Images tab.

2.	 Choosing the appropriate values to assign to the instance.

The Instances tab shows the running instances under our cookbook project.

You can also see an overview of what is running in our
environment, by clicking on the Overview tab.

Using OpenStack Dashboard to
terminate instances

Terminating instances is very simple when using OpenStack Dashboard.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user
created in Adding users recipe of Chapter 1, Keystone OpenStack Identity Service,
with the password openstack.

How to do it...
To terminate instances by using OpenStack Dashboard, carry out the following steps:

1.	 Select the Instances tab and choose the instance to be terminated by selecting the
checkbox next to the instance name (or names) then click on the red Terminate
Instances button:

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Chapter 9

239

2.	 We will be presented with a confirmation screen. Click on the Terminate Instances
button to terminate the selected instance:

3.	 We will be presented with the Instances screen with a confirmation that the instance
has been terminated successfully.

How it works...
Terminating instances by using OpenStack Dashboard is easy. We simply select our running
instance and click on the Terminate Instances button, which is highlighted when an instance
is selected. After clicking on the Terminate Instances button, we are asked to confirm this
action to minimize the risk of accidentally terminating an instance.

Using OpenStack Dashboard for connecting
to instances using VNC

OpenStack Dashboard has a very handy feature that allows a user to connect to our
running instances through a VNC (Virtual Network Console) session within our Web browser.
This gives us the ability to manage our instance through a virtual console window without
invoking an SSH session separately, and is a great feature for accessing desktop instances
such as those running Windows.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user created in
Adding users recipe of
Chapter 1, Keystone OpenStack Identity Service, with the password openstack.

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Using OpenStack Dashboard

240

How to do it...
To connect to a running instance by using VNC through the Web browser, carry out the
following steps:

1.	 Click on the Instances tab and choose an instance to which we want to connect.

2.	 Next is the More button with a down arrow, which reveals more options. Click on it:

3.	 Select the Console option. This takes you to a console screen, which allows you to log
in to your instance:

Chapter 9

241

Your instance must support local logins. Many Linux cloud
images expect a user to authenticate by using SSH Keys.

How it works...
Connecting through our Web browser uses a VNC proxy session, which was configured by
using the novnc, nova-consoleauth, and nova-console packages, as described in
the installation section. Only browsers that support WebSocket connections are supported.
Generally, this can be any modern browser with HTML5 support.

Using OpenStack Dashboard to
add new tenants

OpenStack Dashboard is a lot more than just an interface to our instances. It allows an
administrator to configure environments, users, and tenants.

Tenants are known as Projects within the OpenStack Dashboard. Adding new tenants that
users can be members of is achieved quite simply in OpenStack Dashboard. For a VLAN
managed environment, it also involves assigning an appropriate private network to that new
tenant by using the console. To do this, we must log in to OpenStack Dashboard as a user with
admin privileges and also log in to Shell on our OpenStack Controller API server.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo
user created in Adding users recipe of Chapter 1, Keystone OpenStack Identity Service,
with the password openstack.

If using VLAN Manager under Nova network we need to run some commands to tie our
VLAN private networks to our tenants as this isn't possible under the OpenStack Dashboard.
To do this, log on to a shell on our Controller host. If this was created using Vagrant run the
following command:

vagrant ssh controller

http://172.16.0.200/horizon
http://172.16.0.200/horizon

Using OpenStack Dashboard

242

How to do it...
To add a new tenant to our OpenStack environment, carry out the following steps:

1.	 When we log in as a user with admin privileges, an extra tab called Admin appears.
Clicking on this tab shows the System Panel options. This tab allows us to configure
our OpenStack environment as shown in the following screenshot:

2.	 To manage tenants, click on the Projects option listed under System Panel. This will
list the available tenants in our environment as shown in the following screenshot:

3.	 To create a new tenant, click on the Create Project button.

Chapter 9

243

4.	 Next, we are presented with a form that asks for the name of the tenant and a
description. Enter horizon as our tenant, and enter a description:

5.	 Ensure that the tenant is enabled by selecting the Enabled checkbox, and then click
on the Create Project button.

6.	 We will be presented with the list of tenants that are now available and a message
saying that the horizon tenant was created successfully and asking us to make a
note of the new Tenant ID.

Using OpenStack Dashboard

244

Only for a VLAN managed network
If our OpenStack environment has been set up by using VLAN Manager in /
etc/nova/nova.conf (the default when nothing is specified), run the
following command in Shell on our OpenStack Controller server:
sudo nova-manage network create \

 --label=horizon \
 --num_networks=1 \
 --network_size=64 \
 --vlan=101 \
 --bridge_interface=eth2 \
 --project_id=75f386f48e77479f9a5c292b9cf8d4ec \
 --fixed_range_v4=10.2.0.0/8

This creates an IP range on a specific VLAN that we have associated with our horizon tenant.
Once successful, our new tenant is available to use.

How it works...
OpenStack Dashboard is a feature rich interface that complements the command-line options
available to you when managing our OpenStack environment. This means we can simply
create a tenant (Ubuntu's interface refers to this a project) which users can belong to, within
OpenStack Dashboard.

When creating new tenants under a VLAN Manager configured OpenStack network,we assign
an IP address range and specific VLAN ID to this tenant. If we assign a new VLAN, please
ensure you configure your hardware switches accordingly, so that the private network can
communicate by using this new VLAN ID. Note that we use the following parameters with the
nova-manage command when configuring a network to match our new tenant:

ff --label=horizon

ff --vlan=101

ff --project_id=75f386f48e77479f9a5c292b9cf8d4ec

What we have done is name this private network appropriately, matching our tenancy.
We have created a new VLAN so that traffic is encapsulated in a new VLAN, separating this
traffic from other tenants. We finally specified the ID of the tenancy that was returned when
we created the tenant through OpenStack Dashboard.

Chapter 9

245

Using OpenStack Dashboard for
user management

OpenStack Dashboard gives us the ability to administer users through the Web interface.
This allows an administrator to easily create and edit users within an OpenStack environment.
To manage users, you must log in using an account that is a member of the admin role.

Getting ready
Load a Web browser, point it to our OpenStack Dashboard address at
http://172.16.0.200/horizon, and log in as a user, such as the demo user created in
Adding users, Chapter 1, Keystone OpenStack Identity Service with the password openstack.

How to do it...
User management under OpenStack Dashboard is achieved by carrying out the steps
discussed in the following sections.

Adding users
To add users, perform the following steps:

1.	 Under Admin System Panel, click on the Users option to bring back a list of users on
the system:

http://172.16.0.200/horizon

Using OpenStack Dashboard

246

2.	 To create a new user, click on the Create User button.

3.	 We will be presented with a form that asks for username details. Enter the username,
e-mail, and the password for that user. In the example shown in the following
screenshot, we create a user named test, set openstack as the password, and
assign that user to the horizon tenant with the role of admin:

4.	 We are returned to the screen listing the users of our OpenStack environment with a
message stating that our user creation was successful.

Deleting users
To delete users, perform the following steps:

1.	 Under Admin System Panel, click on the Users option to bring back a list of users on
the system.

2.	 We will be presented with a list of users in our OpenStack environment. To delete
a user, click on the More button, which will present a dropdown list with the option
Delete User:

Chapter 9

247

3.	 Clicking on the Delete User option will bring up a confirmation dialog box. Clicking on
the Delete User button will remove the user from the system:

Updating user details and passwords
To update user details and passwords, perform the following steps:

Under Admin System Panel, click on the Users option to bring up a list of users on
the system.

To change a user's password, e-mail address, or primary project (tenant) click on the
Edit button for that user.

This brings up a dialog box asking for the relevant information. When the information
has been set as we want it to be, click on the Update User button:

Using OpenStack Dashboard

248

Adding users to tenants
To add users to tenants, perform the following steps:

1.	 Under Admin System Panel, click on the Projects option to bring up a list of tenants
on the system:

2.	 Click on the Modify Users option to bring up a list of users associated with a tenant
as well as a list of users, which we can add to that tenant:

Chapter 9

249

3.	 To add a new user to the list, simply click on the + (plus sign) button next that user.

4.	 To change the role of the user within that tenant, select the dropdown next to the
username and select a new role:

5.	 After clicking the Save button at the bottom of the dialog box, we see a message
saying that our tenant has been updated. This user can now launch instances in
different tenants when they log on.

Removing users from tenants
To remove users from tenants, perform the following steps:

1.	 Under Admin System Panel, click on the Projects option to bring up a list of tenants
on the system.

2.	 To remove a user from a tenant, for example horizon, click on the dropdown list
next to the Edit Project button, to reveal further options.

Using OpenStack Dashboard

250

3.	 Click on the Modify Users option to bring up a list of users associated with a tenant
as well as a list of users, which we can add to that tenant:

4.	 To remove a user from this tenant, click on the - (minus sign) button next to that
particular user under project members.

5.	 After clicking the Save button at the bottom of the dialog box, we see a message
saying that our tenant has been updated.

How it works...
OpenStack Dashboard is a feature rich interface that complements the command-line options
available to us when managing our cloud environment. The interface has been designed so
that the functions available are as intuitive as possible to the administrator. This means that
we can easily create users, modify their membership within tenants, update passwords, and
remove them from the system altogether.

10
Automating OpenStack

Installations

In this chapter, we will cover:

ff Installing Opscode Chef Server

ff Installing Chef Client

ff Downloading cookbooks to support DHCP, Razor, and OpenStack

ff Installing PuppetLabs Razor and DHCP from cookbooks

ff Setting up a Chef environment for OpenStack

ff Booting the first OpenStack node into Razor

ff Defining a Razor broker, model, and policy

ff Monitoring the node installation

ff Using Chef to install OpenStack

ff Expanding our OpenStack environment

Introduction
OpenStack is a suite of software designed to offer scale-out cloud environments deployed
in datacenters around the world. Managing installation of software in a remote location is
different (and sometimes challenging), compared to being able to install software locally,
and so tools and techniques have been developed to ease this task. Design considerations
of how to deal with hardware and software failure must also be taken into consideration in
operational environments.

Automating OpenStack Installations

252

This chapter introduces some methods and software that will allow you to extend your DevOps
or infrastructure as code approaches into your OpenStack environment. The recipes here
are used when you start to move out of the testing phase and into managing a production
OpenStack. They give you the basis for building and rebuilding various aspects of your
environment on the fly, as well as expanding or contracting the environment dynamically.

Notes for this edition of the OpenStack Cookbook

There are lots and lots of choices when it comes to the bare-metal and
automated provisioning of an OpenStack environment. In this edition of
the book, after some discussion with Kevin and those in the community,
we decided to change gears from Ubuntu's MaaS to something that
would allow for a greater degree of flexibility. After considering the great
work going on in the TripleO project and Bare Metal OpenStack, we
decided that while great progress is being made in those projects, at
this time we were going to print with PuppetLabs Razor and Chef.

In our automated OpenStack installation symphony, each tool has a single job and was
chosen because it suits its job role well. However, we also designed this section so that
various tools could be swapped out with their analogues as well. So while we use Chef, you
can use Puppet, and so on.

Installing Opscode Chef Server
Opscode Chef Server provides our OpenStack automation system with a configuration
management framework. In this case, a configuration management framework allows us
to specify, much like we have in Vagrant in other places in the book, explicitly how we want
our environment to be installed, configure, and behave. Each platform, Opscode Chef,
PuppetLabs, Ansible, Salt, and others, have their own terminology for the various pieces. In
our example recipes, we will be using OpsCode Chef. Thus, you will see some of the following
terms commonly:

ff Cookbook: A cookbook is a collection of recipes to perform specific tasks. Much like
the cookbook you are now reading.

ff Recipes: A recipe is the basic building block for Chef. It performs a specific task. Say
installing an NTP Server.

ff Role: A role is a Server function, defined by a collection of recipes and cookbooks to
be applied in a specific order.

ff Node: A node can be considered the Server or instance that these configurations will
be applied to.

As we progress, we will use cookbooks to state how our environment should be configured.
The Chef server maintains the working copy of node and environment attributes.
Additionally, it contains the role and cookbook definitions we then assign to nodes to
complete the configuration.

Chapter 10

253

Getting ready
As we have in every chapter up to this point, we are using Vagrant and VirtualBox to build our
environment. For this chapter, however, we are building a new environment so we will need to
issue the following commands:

mkdir Auto_Openstack

cd Auto_Openstack/

vagrant init

Next, we need to edit our Vagrant file so it looks like the following:

nodes = {
 'chef' => [1, 100],
 'razor' => [1, 101],
 'node' => [3, 103],
}

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
 config.vm.box_url = "http://files.vagrantup.com/precise64.box"
 config.vm.usable_port_range= 2800..2900

 nodes.each do |prefix, (count, ip_start)|
 count.times do |i|
 hostname = "%s" % [prefix, (i+1)]

 config.vm.define "#{hostname}" do |box|
 box.vm.hostname = "#{hostname}.cook.book"
 box.vm.network :private_network, ip: "172.16.0.#{ip_
start+i}", :netmask => "255.255.0.0"

 # If using Fusion
 box.vm.provider :vmware_fusion do |v|
 v.vmx["memsize"] = 1024
 if prefix == "chef"
 v.vmx["memsize"] = 3128
 end
 end

 # Otherwise using VirtualBox
 box.vm.provider :virtualbox do |vbox|
 # Defaults

Automating OpenStack Installations

254

 vbox.customize ["modifyvm", :id, "--memory", 1024]
 vbox.customize ["modifyvm", :id, "--cpus", 1]
 if prefix == "chef"
 vbox.customize ["modifyvm", :id, "--memory",
3128]
 end
 end
 end
 end
 end
end

Finally, let's power on the Chef Server node and login:

vagrant up Chef

How to do it…
Log into the Chef Server created with Vagrant:

vagrant ssh chef

To install the Chef Server, issue the following commands:

wget -O chef-server-11.deb https://opscode-omnitruck-release.
s3.amazonaws.com/ubuntu/12.04/x86_64/Chef-Server_11.0.6-1.ubuntu.12.04_
amd64.deb

sudo dpkg -i chef-server-11.deb

sudo chef-server-ctl reconfigure

sudo chef-server-ctl test

mkdir ~/.chef

sudo cp /etc/chef-server/admin.pem ~/.chef

sudo cp /etc/chef-server/chef-validator.pem ~/.chef

How it works...
The preceding commands download the Opscode Omnibus installer for the Chef Server and
then execute the package. Next, we use the chef-server-ctl command to perform the
initial configuration of the Chef Server and test our installation. Finally, we move our Chef
Server certificate files into a known location for use later.

Chapter 10

255

Installing Chef Client
Next on our Chef Server node, we need to install the Chef Client that will provide us with the
Knife utility. The Knife utility is how we issue commands and perform configurations on the
Chef Server and for our nodes.

Getting ready
Log into the Chef Server node by issuing the following Vagrant command:

vagrant ssh chef

How to do it...
Now that you are logged in, issue the following command to install the Chef Client:

sudo apt-get install -y curl

curl -L https://www.opscode.com/chef/install.sh | sudo bash

sudo cat > ~/.chef/knife.rb <<EOF

log_level :info

log_location STDOUT

node_name 'admin'

client_key '~/.chef/admin.pem'

validation_client_name 'chef-validator'

validation_key '~/.chef/chef-validator.pem'

chef_server_url 'https://chef.cook.book'

cookbook_path '/root/cookbooks/'

syntax_check_cache_path '~/.chef/syntax_check_cache'

EOF

How it works...
The Chef Client is installed using a curl command, which streams the output of install.sh
to the bash command line. Next we create a file that provides the configuration for the knife
utility, specifying where it can find our Chef Server as well as the certificate files.

Automating OpenStack Installations

256

Downloading cookbooks to support DHCP,
Razor, and OpenStack

Now that we have installed both Chef Server and its Knife utility, we need to download the
Chef cookbooks to support the remainder of our installation.

Getting started
Log into the Chef Server:

vagrant ssh chef

How to do it...
On the Chef Server, execute the following commands to download, configure, and install the
cookbooks and roles to support the rest of our installation efforts. To perform this, execute
the following commands:

Create chef Repo

sudo apt-get install –y git

sudo git clone git://github.com/opscode/chef-repo.git /root/cookbooks

Download the DHCP Cookbook

sudo knife cookbook site install dhcp

sudo knife data bag create dhcp_networks

sudo mkdir -p /root/databags/dhcp_networks

sudo cat > /root/databags/dhcp_networks/razor_dhcp.json <<EOF

{

 "id": "172-16-0-0_24″,
 "routers": ["172.16.0.2"],

 "address": "172.16.0.0″,
 "netmask": "255.255.255.0″,
 "broadcast": "172.16.0.255″,
 "range": "172.16.0.50 172.16.0.59″,
 "options": ["next-Server 172.16.0.101"]

}

EOF

Chapter 10

257

sudo knife data bag from file dhcp_networks /root/databags/dhcp_networks/
razor_dhcp.json

Download the PuppetLabs Razor Cookbooks

sudo knife cookbook site install razor

RAZOR_IP=\"172.16.0.101\"

sudo sed -i "s/node\['ipaddress'\]/$RAZOR_IP/g" /root/cookbooks/razor/
attributes/default.rb

sudo knife cookbook upload -o /root/cookbooks --all

Download the Rackspace OpenStack Cookbooks

git clone https://github.com/rcbops/Chef-cookbooks.git

cd chef-cookbooks

git checkout v4.0.0

git submodule init

git submodule sync

git submodule update

sudo knife cookbook upload -a -o cookbooks

sudo knife role from file roles/*rb

How it works…
The first thing we needed to do was create a Chef cookbook repo. This provides the git structure
that lets the Chef Server version our cookbooks. Next we download the DHCP cookbook and
create a Chef "Databag", or set of configuration values, to contain the configuration of our DHCP
Scope, such as IP address range and critically, the next server. After that we download both
the Razor and OpenStack Cookbooks. Finally, we add the IP address of the Razor Server to its
configuration and then upload all of our cookbooks and roles.

Automating OpenStack Installations

258

Installing PuppetLabs Razor and DHCP
from cookbooks

There are a number of provisioning systems, such as Cobbler, Kickstart, and Ubuntu's own
MAAS, to provision an operating system such as Ubuntu to bare-metal. In this instance, we
are switching from Ubuntu's Metal as a Service to the PuppetLabs Razor service to allow you
more flexibility within your deployment. PuppetLabs Razor, like MAAS, provides a PXE boot
environment for your OpenStack nodes. Additionally when a node PXE boots, it boots into
the Razor Micro Kernel environment which in turn runs PuppetLabs Facter and reports back
lots of details about the physical node. From there, you can use the Razor CLI or Razor API to
query inventory details about a machine or set of machines and provision an OS to them. An
additional feature is the "broker", which is what allows for a hand-off to a DevOps framework.
In this section, we will cover using the Razor cookbooks to install Razor onto the node.

Getting ready
To get started, we need to log into our Chef Server:

vagrant ssh chef

How to do it...
On the Chef Server, we need to configure a number of attributes for both the DHCP service as
well as the Razor service before we can log into the Razor node and apply the configuration.
To do this, execute the following commands:

sudo cat > ~/.chef/razor.json <<EOF

{

 "name": "razor.book",

 "chef_environment": "_default",

 "normal": {

 "dhcp": {

 "parameters": {

 "next-Server": "172.16.0.101″
 },

 "networks": ["172-16-0-0_24"],

 "networks_bag": "dhcp_networks"

 },

 "razor": {

 "bind_address": "172.16.0.101″,

Chapter 10

259

 "images": {

 "razor-mk": {

 "type": "mk",

 "url": "https://downloads.puppetlabs.com/razor/iso/
dev/rz_mk_dev-image.0.12.0.iso",

 "action": "add"

 },

 "precise64″: {
 "url": "http://mirror.anl.gov/pub/ubuntu-iso/CDs/
precise/ubuntu-12.04.2-Server-amd64.iso",

 "version": "12.04″,
 "action": "add"

 }

 }

 },

 "tags": []

 },

 "run_list": [

 "recipe[razor]",

 "recipe[dhcp::server]"

]

}

EOF

knife node from file ~/.chef/razor.json

Now that we have configured our environment, we can log into the Razor node and finish
our installation:

vagrant up razor

vagrant ssh razor

sudo mkdir -p /etc/chef

sudo scp user@host:/location/of/chef-validator.pem /etc/chef/
validation.pem

sudo echo "172.16.0.100 chef.book" >> /etc/hosts

Automating OpenStack Installations

260

Install chef client

curl -L https://www.opscode.com/chef/install.sh | sudo bash

Make client.rb

sudo cat > /etc/chef/client.rb <<EOF

log_level :info

log_location STDOUT

chef_server_url 'https://chef.book/'

validation_client_name 'chef-validator'

EOF

sudo chef-client

How it works...
In this particular section, there are a number of things happening. First, we log into our
Chef Server and create a node definition file that specifies how our Razor node should be
configured. Specifically, in the "dhcp": section we specify the "next-Server" as being the
Razor node. Additionally configure the DHCP service to use the networking parameters we
specified in the databag earlier. In the "Razor" section, we tell the Razor service to bind to
our private network address. Additionally we tell it what images to use and where they can be
downloaded from. The last thing we configured in the node definition file was the "run_list", or
recipes to apply to the node. In this case, we specified we want to install Razor as well as the
dhcp::Server components.

Once we completed our configuration on the Chef Server, we switched over to the Razor node,
copied in the Chef validation certificate. This allows the Chef Client to register with the Chef
Server. Next, we put an entry into the /etc/hosts file to allow our Razor Server to identify
where the Chef Server is. Next, we installed and configured the Chef Client using the same
curl script we did when setting up the Chef Server. Finally, we executed the Chef Client which
preformed a number of actions such as register with the Chef Server and execute the recipes
in our run-list.

Setting up a Chef environment for
OpenStack

At this stage, you will have a functioning Opscode Chef Server, as well as a PuppetLabs Razor
environment, so we can now begin to configure our OpenStack environment. For this, our Chef
Server uses a .json file to define the attributes that will make up our environment, such as
networks and services.

Chapter 10

261

Getting ready
To set up our environment, first log into the Chef Server and sudo to root:

vagrant ssh Chef

sudo su -

How to do it...
Once logged into the Chef Server, run the following commands:

cat > /root/.chef/cookbook.json <<EOF
{
 "name": "cookbook",
 "description": "OpenStack Cookbook environmnet",
 "cookbook_versions": {
 },
 "json_class": "chef::Environment",
 "chef_type": "environment",
 "default_attributes": {
 },
 "override_attributes": {
 "glance": {
 "images": [
 "cirros",
 "precise"
],
 "image_upload": true
 },
 "nova": {
 "libvirt": {
 "virt_type": "qemu"
 },
 "ratelimit": {
 "api": {
 "enabled": true
 },
 "volume": {
 "enabled": true
 }
 },
 "networks": [
 {
 "label": "public",

Automating OpenStack Installations

262

 "bridge_dev": "eth1",
 "dns2": "8.8.4.4",
 "num_networks": "1",
 "ipv4_cidr": "10.10.100.0/24",
 "network_size": "255",
 "bridge": "br100",
 "dns1": "8.8.8.8"
 }
]
 },
 "developer_mode": false,
 "mysql": {
 "allow_remote_root": true,
 "root_network_acl": "%"
 },
 "osops_networks": {
 "nova": "172.16.0.0/24",
 "public": "172.16.0.0/24",
 "management": "172.16.0.0/24"
 },
 "monitoring": {
 "metric_provider": "collectd",
 "procmon_provider": "monit"
 }
 }
}
EOF

Once you have created the file, the next step is to import it into Chef:

knife environment from file /root/.chef/cookbook.json

How it works...
The OpenStack cookbooks we imported earlier will need details about the environment to be
built. The advantage of keeping these details in Chef Server environments, is it allows you to
use the same Chef Server for test, staging, and production. Further, keeping our configuration
details in a file allows us to check them into a version control system to track exactly how an
environment was built and changed over time.

In the cookbook.json file we created, we provided for the minimum required to stand
up OpenStack. Specifically, there are several important sections. The first one configures
the OpenStack Image service Glance to download the Cirros and Ubuntu Precise images.
Additionally, it configures glance to allow uploads:

Chapter 10

263

 "glance": {
 "images": [
 "cirros",
 "precise"
],
 "image_upload": true
 },

Next, we provided details for configuring the Nova Compute service. In our example, we
specified we want to use qemu as our virtualization engine. In a production environment you
would want to change this to KVM, Xen or others. Additionally we set up an API rate limit, this
is a test environment after all, and enabled volumes:

 "nova": {
 "libvirt": {
 "virt_type": "qemu"
 },
 "ratelimit": {
 "api": {
 "enabled": true
 },
 "volume": {
 "enabled": true
 }
 },

Next, we specify networking details. Specifically we specify bridge devices, DNS information,
how many networks to create, the size of the network and then some:

 "networks": [
 {
 "label": "public",
 "bridge_dev": "eth1",
 "dns2": "8.8.4.4",
 "num_networks": "1",
 "ipv4_cidr": "10.10.100.0/24",
 "network_size": "255",
 "bridge": "br100",
 "dns1": "8.8.8.8"
 }
]

The next several sections specify how to configure services like MySQL or Monitoring as well
as provide directions for where the cookbooks can find the networks configured on our nodes.

Automating OpenStack Installations

264

Booting the first OpenStack node into Razor
Now that our environment is ready, we need to boot a node that will become our first
OpenStack node. That is, we will later assign it the "all in one" role and add additional nodes.

Getting ready
vagrant up node-01

How to do it...
Once the node is powered on, PXE will take over, and you will be able to review the node in
Razor. From the Razor Server, as root:

razor node

Discovered Nodes

 UUID Last Checkin Status
Tags

2lrdkDEZNwDWm7h41oCmlk 7 sec A [IntelCorporation,memsize_1
GiB,cpus_2,vmware_vm,nics_1]

How it works...
In our Vagrantfile at the beginning of the chapter, we specified that node-## will use the
"razor_node" box. This box is a specially created shell VM that is then set to net-boot. In this
instance, the node PXE boots from our Razor Server, the Razor Micro Kernel boots, runs
Facter, and then reports details about the node as tags to the Razor Server. This will allow us
to define policies around specific node attributes.

Defining a Razor broker, model, and policy
Before Razor will do anything more than collecting information about a node, it will need to
have a number of things defined. Specifically, we will define the broker, or how Razor will hand
off an installed node to a Configuration Management framework (Chef), a Razor model to
provide install time details like domain name and default passwords. Finally, we will create a
Razor policy, which will tie the broker and model together and apply it to nodes based on their
attributes, or tags.

Chapter 10

265

Getting ready
Log into the Razor Server as root:

vagrant ssh razor

sudo su -

How to do it...
Now that you are logged into the Razor Server, you will need to run the following commands to
create the Razor model, broker, and policy needed to install a node.

Adding a Razor model
To create a Razor model, execute the following commands:

root@razor:~# razor image

Images

 UUID => 1gsQVKIc1TpbEWPteB2sSc

 Type => OS Install

 ISO Filename => ubuntu-12.04.2-server-amd64.iso

 Path => /opt/razor/image/os/1gsQVKIc1TpbEWPteB2sSc

 Status => Valid

 OS Name => precise64

 OS Version => 12.04

root@razor:~# razor model add -t ubuntu_precise -l openstack_model -i
<UUID_From_razor_image>

--- Building Model (ubuntu_precise):

Please enter node hostname prefix (will append node number) (example:
node)

default: node

(QUIT to cancel)

 >

Automating OpenStack Installations

266

Please enter local domain name (will be used in /etc/hosts file)
(example: example.com)

default: localdomain

(QUIT to cancel)

 > cook.book

Please enter root password (> 8 characters) (example: P@ssword!)

default: test1234

(QUIT to cancel)

 >

Model created

 Label => openstack_model

 Template => linux_deploy

 Description => Ubuntu Precise Model

 UUID => 224ITdMCkDp4lga29f4KIg

 Image UUID => 1gsQVKIc1TpbEWPteB2sSc

Adding a Razor broker
Next, we create a broker using the following commands:

razor broker add -p chef -n openstack_broker -d "OpenStack Broker"

--- Building Broker (chef):

Please enter the URL for the Chef Server. (example: https://Chef.example.
com:4000)

(QUIT to cancel)

 > https://Chef.cook.book

Please enter the Chef version (used in gem install). (example: 10.16.2)

(QUIT to cancel)

 > 11.4.4

Please enter a paste of the contents of the validation.pem file,
followed by a blank line. (example: -----BEGIN RSA PRIVATE KEY-----\
nMIIEpAIBAA...)

(QUIT to cancel)

 > -----BEGIN RSA PRIVATE KEY-----

MIIEpAIBAAKCAQEA1EMFXoQGRRgRTgu6N8lhwO1ygWwsMW92hfzE2Vcb1o/q3dEr

…

-----END RSA PRIVATE KEY-----

Chapter 10

267

Please enter the validation client name. (example: myorg-validator)

default: chef-validator

(QUIT to cancel)

 >

Please enter the Chef environment in which the chef-client will run.
(example: production)

default: _default

(QUIT to cancel)

 > cookbook

Please enter the Omnibus installer script URL. (example: http://mirror.
example.com/install.sh)

default: http://opscode.com/chef/install.sh

(QUIT to cancel)

 >

Please enter an alternate path to the chef-client binary. (example: /usr/
local/bin/chef-client)

default: chef-client

(QUIT to cancel)

 >

Please enter an optional run_list of common base roles. (example:
role[base],role[another])

(SKIP to skip, QUIT to cancel)

 > SKIP

 Name => openstack_broker

 Description => OpenStack

 Plugin => chef

 UUID => 39XT0By6aFT2XzqdcD8cEQ

 Chef Server URL => https://Chef.cook.book

 Chef Version => 11.4.4

 Validation Key MD5 Hash => 55822d1a3ef564a66112f91041251690

 Validation Client Name => chef-validator

 Bootstrap Environment => openstack

 Install Sh Url => http://opscode.com/chef/install.sh

 Chef Client Path => chef-client

 Base Run List =>

Automating OpenStack Installations

268

Adding a Razor policy
Our last step is to add a Razor policy using the following commands:

razor policy add -p linux_deploy -l openstack_base -m <model_UUID> -b
<broker_UUID> -t OracleCorporation –e true

Policy created

 UUID => 4IMX7WwWukSvLnEInmL5Wz

 Line Number => 0

 Label => openstack_base

 Enabled => true

 Template => linux_deploy

 Description => Policy for deploying a Linux-based operating system.

 Tags => [OracleCorporation]

 Model Label => lol

 Broker Target => lol

 Currently Bound => 0

 Maximum Bound => 0

 Bound Counter => 0

How it works...
Our first command "razor image" was executed to list all of the images Razor is aware of
and their corresponding UUID. The UUID for the Ubuntu Precise image was used in the next
command, razor model add. During the razor model add, we supplied installation time
details about our Ubuntu model.

Next, we created the Razor broker. The razor broker add command is what tells Razor
where and how to hand off an installed node to a configuration management framework. In
executing the command, we are walked through a wizard and prompted for the URL of our
Chef Server, the validation.pem RSA key, as well as the Chef version to install.

Finally, we executed razor policy add to tie it all together. Specifically, we specified a
"linux_deploy" policy, named it "openstack_base", and configured it to use both the model we
created earlier as well as the broker we created. In the tags field, as we are in a small known
environment, we specified "OracleCorporation", which will grab any VirtualBox VMs booted
onto the Razor network.

Chapter 10

269

Monitoring the node installation
Once you have created and enabled the policy nodes will begin to install. This may or may
not take a long time depending on the size of your system. Razor provides a basic set of
monitoring commands so you can tell when nodes have finished installing.

Getting ready
Log into the razor node and sudo to root.

vagrant ssh razor

sudo su -

How to do it...
To monitor the install progress of a node, execute the following command:

watch razor active_model logview

How it works...
The razor active_model logview command will report on the activity of nodes as
they progress through the various stages of an installation. You will know your first node has
finished when you see "Broker Success".

Using Chef to install OpenStack
At this stage, we have a node with Ubuntu 12.04 installed by Razor. Additionally, that node
has the 11.4.4 (or whatever version of Chef you are using at the time of this writing) installed.
At this stage, we need to tell Chef that this node will be an "all in one", for example, that it will
run Keystone, Nova Compute, Horizon, Glance, and a number of other services.

Getting ready
To install OpenStack on to our node, log into the Chef Server as root:

vagrant ssh chef

sudo su -

Automating OpenStack Installations

270

How to do it...
To tell Chef that our node is an all in one, execute the following command:

EDITOR=vim knife node edit node1.cook.book

Change the following line:

 "chef_environment": "cookbook",

Add these lines:

 "run_list": [

 "role[allinone]"

]

Then exit vim with ':wq'.

Next log into the node and execute: chef-client.

How it works…
Once logged into the Chef Server, we modified the definition of the node to place it into
our OpenStack environment. Additionally, we assigned the node the "all in one" role, which
contains all of the other roles and services necessary to build a self contained OpenStack
environment. Finally, we execute Chef-client which pushes everything into motion.

Expanding our OpenStack environment
Having a single node OpenStack environment is great, and you can do many things with it.
However, now that we have an OpenStack producing factory with Chef and Razor, we can
easily scale our environment to as many nodes as is required.

Getting ready
Spin up another blank VM on the Razor network:

vagrant up node-##

In our immediate case ## is 02, however, as you are testing this, you may want to go beyond.

Chapter 10

271

How to do it...
Once the node is booted and in the broker success status, log into the Chef Server and run
the following command:

EDITOR=vim knife node edit node2.cook.book

Change the following line:

 "chef_environment": "cookbook",

Add these lines:

 "run_list": [

 "role[single-compute]"

]

Then exit vim with ':wq'.

Next log into the node and execute: chef-client.

How it works…
Once logged into the Chef Server, we modified the definition of the node to place it into our
OpenStack environment. Additionally we assigned the node the "single-compute" role, which
tells the Chef Server to supply the various environmental details, such as the location of
our "all in one" node. With these configuration details, the Chef recipes handle adding the
compute node to the cluster automatically.

11
Highly Available

OpenStack

In this chapter, we will cover:

ff Using Galera for MySQL clustering

ff Configuring HA Proxy for MySQL Galera load balancing

ff Installing and setting up Pacemaker and Corosync

ff Configuring Keystone and Glance with Pacemaker and Corosync

ff Bonding network interfaces for redundancy

Introduction
OpenStack is a suite of software designed to offer scale-out cloud environments, deployed
in datacenters around the world. Managing installation of software in a remote location is
different (and sometimes challenging), compared to being able to install software locally,
and so tools and techniques have been developed to ease this task. Design considerations
of how to deal with hardware and software failure must also be taken into consideration in
operational environments. Identifying single points of failure (SPOF) and adding ways of
making them resilient ensures that our OpenStack environment remains available when
something goes wrong.

This chapter introduces some methods and software to help manage OpenStack in
production datacenters.

Highly Available OpenStack

274

Using Galera for MySQL clustering
OpenStack can be backed by a number of database backends, and one of the most common
options is MySQL. There are a number of ways to make MySQL more resilient and highly
available. The following approach uses a load balancer to front a multi-read/write master
with Galera, taking care of the synchronous replication required in such a setup. Galera
is a synchronous multi-master cluster for MySQL InnoDB databases. Galera clusters allow
synchronous data writes across all nodes with any node being able to take that write in a fully
active/active topology. It features automatic node management, meaning that failed nodes
are removed from the cluster and new nodes are automatically registered. The advantage of
this is that we are adding resilience in the event of a database node failure, as each node
stores a copy of the data.

Getting ready
We'll be using a free online configuration tool from SeveralNines.com to configure a
3-node, multi-master MySQL setup with Galera, monitored using the free cluster management
interface, cmon, using a fourth node. This implies that we have four servers available, running
Ubuntu (other platforms are supported) with enough memory and disk space required for our
environment and at least two CPUs available. The diagram below shows the nodes we will be
installing and configuring:

How to do it...
To cluster MySQL using Galera, carry out the following steps:

Chapter 11

275

Configuring MySQL and Galera
1.	 We first use a Web browser from our desktop and head over to http://www.

severalnines.com/galera-configurator/, where we will input some
information about our environment to produce the script required to install our
Galera-based MySQL cluster.

This is a third-party service asking for details pertinent to our environment.
Do not include passwords for the environment that this will be deployed
to. The process downloads scripts and configuration files that should be
edited to suit before execution with real settings.

2.	 The first screen asks for the Vendor. Select Codership (based on MySQL 5.5) as
shown in the following screenshot:

3.	 The next screen asks for general settings, as follows:
Infrastructure: none/on-premise
Operating System: Ubuntu 12.04
Platform: Linux 64-bit (x86_64)
Number of Galera Servers: 3+1
MySQL PortNumber: 3306
Galera PortNumber: 4567
Galera SST PortNumber: 4444
SSH PortNumber: 22
OS User: galera
MySQL Server Password (root user): openstack
CMON DB password (cmon user): cmon

Firewall (iptables): Disabled

We have specified the OS User as galera. This is a Linux user account
existing on our 4 nodes that we will be using for this installation.

Highly Available OpenStack

276

4.	 Next, we'll configure server properties (configure as appropriate):
System Memory (MySQL Servers): (at least 512Mb)
WAN: no
Skip DNS Resolve: yes
Database Size < 8Gb
Galera Cache (gache): 128Mb
MySQL Usage: Medium write/high read
Number of cores: 2
Max connections per server: 200
Innodb_buffer_pool_size: 48 Mb
Innodb_file_per_table: checked

5.	 On the next screen, we'll configure the nodes and addresses. The first section asks
for details about our ClusterControl Server running Cmon, as follows:
ClusterControl Server: 172.16.0.100
System Memory: (at least 512Mb)
Datadir: <same as for mysql>
Installdir: /usr/local

Web server(apache) settings
Apache User: www-data
WWWROOT: /var/www/

6.	 Further down the screen, we can now configure the Galera nodes. The following
table lists the IP address, data directory, and installation directory for the servers.
Config Directory: /etc/mysql

Server-id IP-address Datadir Installdir
1 172.16.0.101 /var/lib/mysql/ /usr/local/

2 172.16.0.102 same as mentioned
earlier

same as mentioned
earlier

3 172.16.0.103 same as mentioned
earlier

same as mentioned
earlier

7.	 The final step asks which e-mail address the configuration and deployment script
should be sent to. Once a valid e-mail address has been entered, press the Generate
Deployment Scripts button. You will be taken to a summary screen where you will be
presented with an API key. You will require this key to complete the installation.

The API key is also e-mailed to you and presented again at
the end of the installation script that gets run on the nodes.

Chapter 11

277

Node preparation
1.	 Each node is configured such that the user used to run the setup routine (the OS

user as configured in step 2 in the previous section) can SSH to each node—including
itself—and run commands through sudo without being asked for a password. To do
this, we first create the user's SSH key as follows:
ssh-keygen -t rsa -N ""

2.	 We now need to copy this to each of our nodes, including the node we're on now (so
that it can SSH to itself):
copy ssh key to 172.16.0.100, 172.16.0.101, 172.16.0.102

and 172.16.0.103

for a in {100..103}

do

 ssh-copy-id -i .ssh/id_rsa.pub galera@172.16.0.${a}

done

The user specified here, galera, has to match the OS
User option specified when we configured Galera using
the SeveralNines configurator.

3.	 This will ask for the password of the Galera user on each of the nodes, but following
this, we should not be prompted. To test, simply do the following, which should get
executed without intervention:
for a in {100..103}

do

 ssh galera@172.16.0.${a} ls

done

4.	 We now need to ensure the G	 alera user can execute commands using sudo
without being asked for a password. To do this, we execute the following on all nodes:

echo "galera ALL=(ALL:ALL) NOPASSWD:ALL" | sudo tee -a
 /etc/sudoers.d/galera

Then fix the permissions to prevent future warnings

sudo chmod 0440 /etc/sudoers.d/galera

Highly Available OpenStack

278

Installation
1.	 From the e-mail that has been sent, download the attached gzipped tarball,

and copy it over to the first of our nodes that we specified in the configuration as the
ClusterControl Server (for example, 172.16.0.100). The tarball is small and contains
the pre-prepared shell scripts and our configuration options to allow for a semi-
automated installation of Galera and MySQL.

2.	 Log in to the ClusterControl Server as the OS User specified in step 2 of the MySQL
and Galera Configuration section (for example, galera)
ssh galera@172.16.0.100

3.	 Unpack the tarball copied over and change to the install directory in the unpacked
archive, as follows:
tar zxf s9s-galera-codership-2.4.0.tar.gz

cd s9s-galera-codership-2.4.0/mysql/scripts/install

4.	 Once in this directory, we simply execute the deploy.sh script:
bash ./deploy.sh 2>&1 |tee cc.log

5.	 A question will be asked regarding the ability to shell to each node. Answer Y to this.
Installation will then continue, which will configure MySQL with Galera as well as
cmon, to monitor the environment.

6.	 After a period of time, once installation has completed, we point our Web browser
to the ClusterControl server to finalize the setup at the address specified, for
example, http://172.16.0.100/cmonapi/, and when prompted to Register
your cluster with ClusterControl, change the server listening address to be
http://172.16.0.100/clustercontrol as shown in the following screenshot:

Chapter 11

279

7.	 Once done, click on the Login Now button and we will then be presented with a
login screen. To login as the admin user, enter the e-mail address you used to
retrieve the script from SeveralNines.com and the password admin. See the
screenshot below:

8.	 Once you have logged in, we will be asked to register the cluster with ClusterControl
by using the API key that was presented at the end of the installation script as well as
the address of our ClusterControl server API, for example, http://172.16.0.100/
cmonapi. The following screenshot shows an example of this:

9.	 Once complete, click on Register and this will take us to the ClusterControl
administration screen.

Highly Available OpenStack

280

Configuration of database cluster for OpenStack
1.	 Once the cluster has been set up, we can now create the databases, users, and

privileges required for our OpenStack environment, as we would do for any other
OpenStack installation. To do this, we click on the Manage link as shown in the
following screenshot:

2.	 From this screen, choose the Manage menu, and select the Schemas and Users
menu option as shown in the following screenshot:

3.	 Under Schema and Users, we can create and drop databases, create and delete
users, and grant and revoke privileges. For OpenStack, we need to create five users
and the five databases, with appropriate privileges, that relate to our OpenStack
installation. These are nova, keystone, glance, quantum (used by Neutron), and
cinder. First, we create the nova database. To do this, click on the Create Database
button as shown in the following screenshot:

Chapter 11

281

4.	 Once entered, click on the Create Database button and a popup will acknowledge
the request as shown as follows:

5.	 Repeat the process to create the keystone, glance, quantum and
cinder databases.

6.	 Once done, we can now create our users. To do this we click on the Privileges button
as shown below:

7.	 To create a user called nova, that we will use to connect to our nova database, click
on the Create User button and fill in the details as shown in the following screenshot:

Highly Available OpenStack

282

8.	 Repeat this step for each of the required usernames for our other database, which we
will call the same name for ease of administration: glance, keystone, quantum,
and cinder. We will end up with the users as shown below:

9.	 With the users created, we assign their privileges to the corresponding databases.
We will create a user named nova, which is allowed to access our database cluster
from any host (using the MySQL wildcard character %). The following screenshot
shows this:

10.	 Repeating this step for the other users gives us the required privileges for us to utilize
our new cluster for OpenStack as shown in the following screenshot:

Chapter 11

283

How it works...
Galera replication is a synchronous multi-master plugin for InnoDB. It has the advantage
that any client can write to any node in the cluster and not suffer from write conflicts or a
data replication lag. There are some caveats to a Galera-backed MySQL cluster that must
be considered though. Any database write is only as fast as the slowest node, to maintain
synchronicity. As the number of nodes in a Galera cluster size increases, the time to write to
the database can increase. Finally, given that each node maintains a copy of the database on
its local storage, it isn't as space-efficient as using a cluster based on shared storage.

Setting up a highly available MySQL cluster with Galera for data replication is easily achieved
using the freely available online configuration tool from SeveralNines. By following the
process, we end up with four nodes, of which three are assigned to running MySQL with
Galera and the fourth allows us to manage the cluster.

With the automatic routine installation complete, we can create our databases and users and
can assign privileges using the ClusterControl interface, without needing to think about
any replication issues. In fact, we can create these by attaching to any one of the three MySQL
servers we would normally treat independently, and the data will automatically sync to the
other nodes.

For OpenStack, we create five databases (nova, glance, quantum, cinder, and
keystone) and assign appropriate users and privileges to these databases. We can then use
this information to put into the appropriate configuration files for OpenStack.

Configuring HA Proxy for MySQL Galera
load balancing

With our MySQL Galera cluster configured, each of the nodes is able to take traffic, and the
writes are seamlessly replicated to other nodes in the cluster. We could use any of the MySQL
node addresses and place them in our configuration files, but if that node failed, we would not
have a database to attach to and our OpenStack environment would fail. A possible solution
to this is to front the MySQL cluster using load balancing. Given that any of the nodes are able
to take reads and writes, with data consistency, load balancing is a great solution.

The steps in the following section configure a highly available 2-node HA Proxy setup that we
can use as a MySQL endpoint to place in our OpenStack configuration files. In production, if
load balancing is desired, it is recommended that dedicated HA load balancers are used.

Highly Available OpenStack

284

Getting ready
Configure two servers, both running Ubuntu 12.04, that are configured on the same network
as our OpenStack environment and MySQL Galera cluster. In the following steps, the two
nodes will be on IP addresses 172.16.0.248 and 172.16.0.249, with a floating IP address
(that will be set up using keepalived) of 172.16.0.251. This address is used when we
configure database connections in our OpenStack configuration files.

How to do it...
As we are setting up identical servers to act in a pair, we will configure a single server
first, and then repeat the process for the second server. The first will utilize the IP address
172.16.0.248. We then repeat the steps utilizing the IP address 172.16.0.249.

To configure HA Proxy for MySQL Galera load balancing, carry out the following steps for each
of our HA Proxy pair:

Installation of HA Proxy for MySQL
1.	 We first install HA Proxy using the usual apt-get process, as follows:

sudo apt-get update

sudo apt-get -y install haproxy

2.	 With HA Proxy installed, we'll simply configure this first proxy server appropriately for
our MySQL Galera cluster. To do this, we edit the /etc/haproxy/haproxy.cfg file
with the following content:
global

 log 127.0.0.1 local0

 log 127.0.0.1 local1 notice

 #log loghost local0 info

 maxconn 4096

 #chroot /usr/share/haproxy

 user haproxy

 group haproxy

 daemon

 #debug

 #quiet

Chapter 11

285

defaults

 log global

 mode http

 option tcplog

 option dontlognull

 retries 3

 option redispatch

 maxconn 4096

 timeout connect 50000ms

 timeout client 50000ms

 timeout server 50000ms

listen mysql 0.0.0.0:3306

 mode tcp

 balance roundrobin

 option tcpka

 option mysql-check user haproxy

 server mysql1 172.16.0.101:3306 weight 1

 server mysql2 172.16.0.102:3306 weight 1

 server mysql3 172.16.0.103:3306 weight 1

3.	 Save and exit the file and start up HA Proxy, as follows:
sudo sed -i 's/^ENABLED.*/ENABLED=1/' /etc/defaults/haproxy

sudo service haproxy start

Highly Available OpenStack

286

4.	 Before we can use this HA Proxy server to access our three MySQL nodes, we must
create the user specified in the haproxy.cfg file that is used to do a very simple
check to see if MySQL is up. To do this, we add a user into our cluster that is simply
able to connect to MySQL. Using the ClusterControl interface, or using the mysql
client and attaching to any of the MySQL instances in our cluster, create the user
haproxy with no password set that is allowed access from the IP address of the
HA Proxy server.

At this point, we can use a MySQL client and point this to the HA Proxy address,
172.16.0.248 and MySQL will respond as expected.

Repeat steps 1 to 4 replacing the IP address 172.16.0.248 with
the IP address of our second node, 172.16.0.249.

5.	 Having a single HA Proxy server sitting in front of our multi-master MySQL cluster
makes the HA Proxy server our single point of failure. To overcome this, we repeat
the previous steps for our second HA Proxy server, and then we use a simple
solution provided by keepalived for VRRP (Virtual Redundant Router Protocol)
management. To do this, we need to install keepalived on both of our HA Proxy
servers. Like before, we will configure one server then repeat the steps for our second
server. We do this as follows:
sudo apt-get update

sudo apt-get -y install keepalived

6.	 To allow running software to bind to an address that does not physically exist on our
server, we add in an option to sysctl.conf, to allow this. Add the following line to /
etc/sysctl.conf.
net.ipv4.ip_nonlocal_bind=1

7.	 To pick up the change, issue the following command:
sudo sysctl -p

Chapter 11

287

8.	 We can now configure keepalived. To do this, we create a /etc/keepalived/
keepalived.conf file with the following contents:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or
 not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state MASTER
 virtual_router_id 51 # Assign one ID for this route
 priority 101 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }
 track_script {
 chk_haproxy
 }
}

9.	 We can now start up keepalived on this server, by issuing the following command:
sudo service keepalived start

10.	 With keepalived now running on our first HA Proxy server, which we have
designated as the Master node, we repeat the previous steps for our second HA
Proxy server with only two changes to the keepalived.conf file (state backup and
priority 100) to give the complete file on our second host the following content:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state BACKUP
 virtual_router_id 51 # Assign one ID for this route
 priority 100 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }
 track_script {
 chk_haproxy
 }
}

Highly Available OpenStack

288

11.	 Start up keepalived on this second node, and they will be acting in co-ordination
with each other. So if you powered off the first HA Proxy server, the second will pick
up the floating IP address, 172.16.0.251, after 2 seconds, and new connections can
be made to our MySQL cluster without disruption.

OpenStack configuration using floating IP address
With both HA Proxy servers running the same HA Proxy configuration, and with both running
keepalived, we can use the virtual_ipaddress address (our floating IP address)
configured as the address that we would then connect to and use in our configuration files. In
OpenStack, we would change the following to use our floating IP address of 172.16.0.251:

Nova
/etc/nova/nova.conf
sql_connection=mysql://nova:openstack@172.16.0.251/nova

Keystone
/etc/keystone/keystone.conf
[sql]
connection = mysql://keystone:openstack@172.16.0.251/keystone

Glance
/etc/glance/glance-registry.conf
sql_connection = mysql://glance:openstack@172.16.0.251/glance

Neutron
/etc/quantum/plugins/openvswitch/ovs_quantum_plugin.ini
[DATABASE]
sql_connection=mysql://quantum:openstack@172.16.0.251/quantum

Cinder
/etc/cinder/cinder.conf
sql_connection = mysql://cinder:openstack@172.16.0.251/cinder

How it works...
HA Proxy is a very popular and useful proxy and load balancer that makes it ideal for
fronting a MySQL cluster to add load-balancing capabilities. It is simple to set up the
service to front MySQL.

The first requirement is listening on the appropriate port, which for MySQL is 3306. The listen
line in the configuration files here also specifies that it will listen on all addresses by using
0.0.0.0 as the address, but you can bind this to a particular address by specifying this to add
an extra layer of control in our environment.

Chapter 11

289

To use MySQL, the mode must be set to tcp and we set keepalived with the tcpka option,
to ensure long-lived connections are not interrupted and closed when a client opens up a
connection to our MySQL servers.

The load balance method used is roundrobin, which is perfectly suitable for a multi-master
cluster where any node can perform reads and writes.

We add in a basic check to ensure our MySQL servers are marked off-line appropriately. Using
the inbuilt mysql-check option (which requires a user to be set up in MySQL to log in to the
MySQL nodes and quit), when a MySQL server fails, the server is ignored and traffic passes to
a MySQL server that is alive. Note that it does not perform any checks for whether a particular
table exists—though this can be achieved with more complex configurations using a check
script running on each MySQL server and calling this as part of our checks.

The final configuration step for HA Proxy is listing the nodes and the addresses that they listen
on, which forms the load balance pool of servers.

Having a single HA Proxy acting as a load balancer to a highly available multi-master cluster is
not recommended, as the load balancer then becomes our single point of failure. To overcome
this, we can simply install and configure keepalived, which gives us the ability to share a
floating IP address between our HA Proxy servers. This allows us to use this floating IP address
as the address to use for our OpenStack services.

Installing and setting up Pacemaker
and Corosync

OpenStack has been designed for highly scalable environments where it is possible to
avoid single point of failures (SPOFs), but you must build this into your own environment.
For example, Keystone is a central service underpinning your entire OpenStack environment,
so you would build multiple instances into your environment. Glance is another service that is
a key to the running of your OpenStack environment. By setting up multiple instances running
these services, controlled with Pacemaker and Corosync, we can enjoy an increase
in resilience to failure of the nodes running these services.

Getting ready
We must first create two servers configured appropriately for use with OpenStack. As these
two servers will just be running Keystone and Glance, only a single network interface and
address on the network that our OpenStack services communicate, will be required. This
interface can be bonded for added resilience.

The first, controller1, will have a host management address of 172.16.0.111. The second,
controller2, will have a host management address of 172.16.0.112.

Highly Available OpenStack

290

How to do it...
To install Pacemaker and Corosync on these two servers that will be running OpenStack
services such as Keystone and Glance, carry out the following:

First node (controller1)
1.	 Once Ubuntu has been installed with an address in our OpenStack environment that

our other OpenStack services can communicate using, we can proceed to install
Pacemaker and Corosync, as follows:
sudo apt-get update

sudo apt-get -y install pacemaker corosync

2.	 It's important that our two nodes know each other by address and hostname, so
enter their details in /etc/hosts to avoid DNS lookups, as follows:
172.16.0.111 controller1.book controller1

172.16.0.112 controller2.book controller2

3.	 Edit the /etc/corosync/corosync.conf file so the interface section matches
the following:
interface {
 # The following values need to be set based on your environment
 ringnumber: 0
 bindnetaddr: 172.16.0.0
 mcastaddr: 226.94.1.1
 mcastport: 5405
}

Corosync uses multi-cast. Ensure that the values don't conflict with
any other multi-cast-enabled services on your network.

4.	 By default, the corosync service isn't set to start. To ensure it starts, edit the /etc/
default/corosync service and set START=yes, as follows:
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

5.	 We now need to generate an authorization key to secure the communication between
our two hosts:
sudo corosync-keygen

Chapter 11

291

6.	 You will be asked to generate some random entropy by typing using the keyboard.
If you are using an SSH session, rather than a console connection, you won't be able
to generate the entropy using a keyboard. To do this remotely, launch a new SSH
session, and in that new session, while the corosync-keygen command is waiting
for entropy, run the following:
while /bin/true; do dd if=/dev/urandom of=/tmp/100 bs=1024
 count=100000; for i in {1..10}; do cp /tmp/100
 /tmp/tmp_$i_$RANDOM; done; rm -f /tmp/tmp_*
 /tmp/100; done

7.	 When the corosync-keygen command has finished running and an authkey file
has been generated, simply press Ctrl + C to copy this random entropy creation loop.

Second node (controller2)
1.	 We now need to install Pacemaker and Corosync on our second host, controller2.

We do this as follows:
sudo apt-get update

sudo apt-get install pacemaker corosync

2.	 We also ensure that our /etc/hosts file has the same entries for our other host, as
before:
172.16.0.111 controller1.book controller1

172.16.0.112 controller2.book controller2

3.	 By default, the corosync service isn't set to start. To ensure that it starts, edit the /
etc/default/corosync service and set START=yes:

sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

First node (controller1)
With the /etc/corosync/corosync.conf file modified and the /etc/corosync/
authkey file generated, we copy this to the other node (or nodes) in our cluster, as follows:

scp /etc/corosync/corosync.conf /etc/corosync/authkey
 openstack@172.16.0.112:

Second node (controller2)
We can now put the same corosync.conf file as used by our first node and the generated
authkey file into /etc/corosync:

sudo mv corosync.conf authkey /etc/corosync

Highly Available OpenStack

292

Starting the Pacemaker and Corosync services
1.	 We are now ready to start the services. On both nodes, issue the following

commands:
sudo service pacemaker start

sudo service corosync start

2.	 To check that our services have started fine and our cluster is working, we can use
the crm_mon command to query the cluster status, as follows:
sudo crm_mon -1

3.	 This will return output similar to the following where the important information
includes the number of nodes configured, the expected number of nodes, and a list
of our two nodes that are online:
============
Last updated: Sat Aug 24 21:07:05 2013
Last change: Sat Aug 24 21:06:10 2013 via crmd on
 controller1
Stack: openais
Current DC: controller1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
0 Resources configured.
============

Online: [controller1 controller2]

First node (controller1)

4.	 We can validate the configuration using the crm_verify command, as follows:
sudo crm_verify -L

5.	 This will bring back an error mentioning STONITH (Shoot The Other Node In The
Head). STONITH is used to maintain quorum when there are at least three nodes
configured. It isn't required in a 2-node cluster. As we are only configuring a 2-node
cluster, we disable STONITH.
sudo crm configure property stonith-enabled=false

6.	 Verifying the cluster using crm_verify again will now show errors:
sudo crm_verify -L

7.	 Again, as this is only a 2-node cluster, we also disable any notion of quorum, using
the following command:
sudo crm configure property no-quorum-policy=ignore

Chapter 11

293

8.	 On the first node, we can now configure our services and set up a floating address
that will be shared between the two servers. In the following command, we've chosen
172.16.0.253 as the floating IP address and a monitoring interval of 5 seconds. To do
this, we use the crm command again to configure this floating IP address, which we
will call FloatingIP.
sudo crm configure primitive FloatingIP \
 ocf:heartbeat:IPaddr2 params ip=172.16.0.253 \
 cidr_netmask=32 op monitor interval=5s

9.	 On viewing the status of our cluster, using crm_mon, we can now see that the
FloatingIP address has been assigned to our controller1 host:
sudo crm_mon -1

This outputs something similar to the following example, which now says we have 1
resource configured for this setup (our FloatingIP):

============
Last updated: Sat Aug 24 21:23:07 2013
Last change: Sat Aug 24 21:06:10 2013 via crmd on
 controller1
Stack: openais
Current DC: controller1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
1 Resources configured.
============

Online: [controller1 controller2]

 FloatingIP	 (ocf::heartbeat:IPaddr2):	 Started controller1

10.	 We can now use this address to connect to our first node, and when we power
that node off, that address will be sent to our second node after 5 seconds of no
response from the first node.

How it works...
Making OpenStack services highly available is a complex subject, and there are a number of
ways to achieve this. Using Pacemaker and Corosync is a very good solution to this problem.
It allows us to configure a floating IP address assigned to the cluster that will attach itself to
the appropriate node (using Corosync), as well as control services using agents, so the cluster
manager can start and stop services as required, to provide a highly available experience to
the end user.

Highly Available OpenStack

294

By installing both Keystone and Glance onto two nodes (each configured appropriately with
a remote database backend such as MySQL and Galera), having the images available using
a shared filesystem or Cloud storage solution means we can configure these services with
Pacemaker to allow Pacemaker to monitor these services. If unavailable on the active node,
Pacemaker can start those services on the passive node.

Configuring Keystone and Glance with
Pacemaker and Corosync

This recipe represents two nodes running both Glance and Keystone, controlled by Pacemaker
with Corosync in active/passive mode, which allows for a failure of a single node. In a
production environment, it is recommended that a cluster consists of at least three nodes to
ensure resiliency and consistency in the case of a single node failure.

Getting ready
We must first create two servers configured appropriately for use with OpenStack. As these
two servers will just be running Keystone and Glance, only a single network interface and
address on the network that our OpenStack services communicate on will be required. This
interface can be bonded for added resilience.

How to do it...
To increase the resilience of OpenStack services, carry out the following steps:

1.	 If Keystone is not installed on this first host, install it and configure it appropriately,
as if we are configuring a single host (refer Chapter 1, Keystone OpenStack Identity
Service). Ensure the keystone database is backed by a database backend such as
MySQL.

2.	 With Keystone running on this host, we should be able to query Keystone using both
its own IP address (172.16.0.111) and the floating IP (172.16.0.253) from a client
that has access to the OpenStack environment.
Assigned IP

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_TENANT_NAME=cookbook

export OS_AUTH_URL=http://172.16.0.111:5000/v2.0/

keystone user-list

Chapter 11

295

FloatingIP (Keepalived and HA Proxy)

export OS_AUTH_URL=http://172.16.0.253:5000/v2.0/

keystone user-list

3.	 On the second node, controller2, install and configure Keystone; configured such
that Keystone is pointing at the same database backend.
sudo apt-get update

sudo apt-get install keystone python-mysqldb

4.	 Copy over the /etc/keystone/keystone.conf file from the first host, put it in
place on the second node, and then restart the Keystone service. There is no further
work required, as the database has already been populated with endpoints and users
when the install was completed on the first node. Restart the service to connect to
the database.
sudo stop keystone

sudo start keystone

5.	 We can now interrogate the second Keystone service on its own IP address.

Second Node

export OS_AUTH_URL=http://172.16.0.112:5000/v2.0/

keystone user-list

Glance across 2 nodes with FloatingIP
In order to have Glance able to run across multiple nodes, it must be configured with a
shared storage backend (such as Swift) and be backed by a database backend (such as
MySQL). On the first host, install and configure Glance, as described in Chapter 2, Starting
OpenStack Image Service.

1.	 On the second node, simply install the required packages to run Glance, which is
backed by MySQL and Swift:
sudo apt-get install glance python-swift

2.	 Copy over the configuration files in /etc/glance to the second host, and start the
glance-api and glance-registry services on both nodes, as follows:
sudo start glance-api

sudo start glance-registry

Highly Available OpenStack

296

3.	 We can now use either the Glance server to view our images as well as the FloatingIP
address that is assigned to our first node:

First node

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.111:5000/v2.0 index

Second node

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.112:5000/v2.0 index

FloatingIP

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.253:5000/v2.0 index

Configuring Pacemaker for use with Glance and Keystone
1.	 With Keystone and Glance running on both nodes, we can now configure Pacemaker

to take control of this service, so that we can ensure Keystone and Glance are
running on the appropriate node when the other node fails. To do this, we first
disable the upstart jobs for controlling Keystone and Glance services. To do this, we
create upstart override files for these services (on both nodes). Create /etc/init/
keystone.override, /etc/init/glance-api.override and /etc/init/
glance-registry.override with just the keyword, manual, in:

2.	 We now grab the OCF (Open Cluster Format) resource agents that are shell scripts or
pieces of code that are able to control our Keystone and Glance services. We must do
this on both our nodes.
wget https://raw.github.com/madkiss/keystone
 /ha/tools/ocf/keystone

wget https://raw.github.com/madkiss/glance/
 ha/tools/ocf/glance-api

wget https://raw.github.com/madkiss/glance/
 ha/tools/ocf/glance-registry

sudo mkdir -p /usr/lib/ocf/resource.d/openstack

sudo cp keystone glance-api glance-registry
 /usr/lib/ocf/resource.d/openstack

sudo chmod 755 /usr/lib/ocf/resource.d/openstack/*

3.	 We should be now be able to query these new OCF agents available to us, which will
return the three OCF agents:
sudo crm ra list ocf openstack

Chapter 11

297

4.	 We can now configure Pacemaker to use these agents to control our Keystone
service. To do this, we run the following set of commands:
sudo crm cib new conf-keystone

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_keystone
 ocf:openstack:keystone \

 params config="/etc/keystone/keystone.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="keystone" \

 client_binary="/usr/bin/keystone" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-keystone

5.	 We then issue a similar set of commands for the two Glance services, as follows:
sudo crm cib new conf-glance-api

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_api ocf:openstack:glance-api
\

 params config="/etc/glance/glance-api.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 client_binary="/usr/bin/glance" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-glance-api

Highly Available OpenStack

298

sudo crm cib new conf-glance-registry

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_registry
ocf:openstack:glance-registry \

 params config="/etc/glance/glance-registry.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-glance-registry

6.	 We can verify that we have our Pacemaker configured correctly, by issuing the
following command:
sudo crm_mon -1

7.	 This brings back something similar to the following:
Last updated: Sat Aug 24 22:55:25 2013
Last change: Tue Aug 24 21:06:10 2013 via crmd on
 controller1
Stack: openais
Current DC: controller1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
4 Resources configured.
============

Online: [controller1 controller2]

 FloatingIP	 (ocf::heartbeat:IPaddr2):	 Started controller1
 p_keystone (ocf::openstack:keystone):
 Started controller1
 p_glance_api (ocf::openstack:glance_api):
 Started controller1
 p_glance_registry (ocf::openstack:glance_registry):
 Started controller1

Chapter 11

299

Here's what to do if you receive an error similar to the following error:
Failed actions:
 p_keystone_monitor_0 (node=ubuntu2, call=3, rc=5,
 status=complete): not installed

Issue the following to clear the status and then view the status again:
sudo crm_resource -P
sudo crm_mon -1

8.	 We are now able to configure our client so that they use the FloatingIP address of
172.16.0.253 for both Glance and Keystone services. With this in place, we can bring
down the interface on our first node and still have our Keystone and Glance services
available on this FloatingIP address.

We now have Keystone and Glance running on two separate nodes, where a node can fail and
services will still be available.

How it works...
Configuration of Pacemaker is predominantly done with the crm tool. This allows us to script
the configuration, but if invoked on its own, allows us to invoke an interactive shell that we can
use to edit, add, and remove services as well as query the status of the cluster. This is a very
powerful tool to control an equally powerful cluster manager.

With both nodes running Keystone and Glance, and with Pacemaker and Corosync running
and accessible on the floating IP provided by Corosync, we configure Pacemaker to control
the running of the Keystone and Glance services by using an OCF agent written specifically for
this purpose. The OCF agent uses a number of parameters that will be familiar to us—whereby
they require the same username, password, tenant, and endpoint URL that we would use in a
client to access that service.

A timeout of 5 seconds was set up for both the agent and when the floating IP address moves
to another host.

Highly Available OpenStack

300

After this configuration, we have a Keystone and Glance active/passive configuration as
shown in the diagram below:

Bonding network interfaces for redundancy
Running multiple services across multiple machines and implementing appropriate HA
methods ensure a high degree of tolerance to failure within our environment, but if it's
the physical network that fails and not the service, outages will occur if traffic cannot flow
to and from that service. Adding in NIC bonding (also known as teaming or link aggregation)
can help alleviate these issues by ensuring traffic flows through diverse routes and switches
as appropriate.

Getting ready
NIC bonding requires co-ordination between system administrators and the network
administrators, who are responsible for the switches. There are various methods available for
NIC bonding. The method presented here is active-passive mode, which describes that traffic
will normally flow through a single switch, leaving the other teamed NIC to take no traffic until
it is required.

How to do it...
Setting up NIC bonding in Ubuntu 12.04 requires an extra package installation to
allow bonding.

1.	 We install this in the usual manner, as follows:
sudo apt-get update

sudo apt-get -y install ifenslave

Chapter 11

301

2.	 With this installed, we simply configure networking as normal in Ubuntu but add
in the required elements for bonding. To do this, we edit the /etc/network/
interfaces file with the following contents (for active-passive mode bonding)—here
we're bonding eth1 and eth2 to give us bond0 with an address of 172.16.0.111:
auto eth1
iface eth1 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto eth2
iface eth2 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto bond0
iface bond0 inet static
 address 172.16.0.111
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255
 bond-slaves none
 bond-mode 1
 bond-miimon 100

3.	 To ensure that the correct bonding mode is used, we add the following contents
into /etc/modprobe.d/bonding.conf which describes an active/passive bond
(mode=1) with a monitoring interval of 100 msec:
alias bond0 bonding
options bonding mode=1 miimon=100

4.	 We can now restart our networking, which in turn will bring up our bonded interface
with the required IP address, as specified:

sudo service networking restart

How it works...
Bonding network interfaces in Ubuntu to cater to switch failure is relatively straightforward,
providing co-ordination with how the switches are set up and configured. With different paths
to different switches configured, and each network interface going to separate switches, a
high level of fault tolerance to network-level events such as a switch failure can be achieved.

Highly Available OpenStack

302

To do this, we simply configure our bonding in the traditional /etc/network/interfaces
file under Ubuntu, but we specify which NICs are teamed with which bonded interface.
Each bonded interface configured has at least a unique pair of interfaces assigned to it,
and then we configure that bonded interface, bond0, with the usual IP address, netmask,
and so on. We tag a few options specifically to notify Ubuntu that this is a bonded interface
of a particular mode.

To ensure the bonding module that gets loaded as part of the kernel has the right mode
assigned to it, we configure the module in /etc/modprobe.d/bonding.conf. When the
bonding module loads along with the network interface, we end up with a server that is able
to withstand isolated switch failures.

See also
ff For more information on the different bonding modes that Ubuntu Linux supports,

see https://help.ubuntu.com/community/LinkAggregation

12
Troubleshooting

In this chapter, we will cover:

ff Understanding logging

ff Checking OpenStack services

ff Troubleshooting OpenStack Compute services

ff Troubleshooting the OpenStack Object Storage services

ff Troubleshooting OpenStack Dashboard

ff Troubleshooting OpenStack Authentication

ff Troubleshooting OpenStack Networking

ff Submitting Bug reports

ff Getting help from the community

Introduction
OpenStack is a complex suite of software that can make tracking down issues and faults quite
daunting to beginners and experienced system administrators alike. While there is no single
approach to troubleshooting systems, understanding where OpenStack logs vital information
or what tools are available to help track down bugs will help resolve issues we may encounter.
However, OpenStack like all software will have bugs that we are not able to solve ourselves.
In that case, we will show you how gathering the required information so that the OpenStack
community can identify bugs and suggest fixes is important in ensuring those bugs or issues
are dealt with quickly and efficiently.

Troubleshooting

304

Understanding logging
Logging is important in all computer systems, but the more complex the system, the more
you rely on logging to be able to spot problems and cut down on troubleshooting time.
Understanding logging in OpenStack is important to ensure your environment is healthy and
you are able to submit relevant log entries back to the community to help fix bugs.

Getting ready
Log in as the root user onto the appropriate servers where the OpenStack services are
installed. This makes troubleshooting easier as root privileges are required to view all
the logs.

How to do it...
OpenStack produces a large number of logs that help troubleshoot our OpenStack
installations. The following details outline where these services write their logs:

OpenStack Compute services logs
Logs for the OpenStack Compute services are written to /var/log/nova/, which is owned
by the nova user, by default. To read these, log in as the root user (or use sudo privileges
when accessing the files). The following is a list of services and their corresponding logs.
Note that not all logs exist on all servers. For example, nova-compute.log exists on your
compute hosts only:

ff nova-compute: /var/log/nova/nova-compute.log

Log entries regarding the spinning up and running of the instances

ff nova-network: /var/log/nova/nova-network.log

Log entries regarding network state, assignment, routing, and security groups

ff nova-manage: /var/log/nova/nova-manage.log

Log entries produced when running the nova-manage command

ff nova-conductor: /var/log/nova/nova-conductor.log

Log entries regarding services making requests for database information

ff nova-scheduler: /var/log/nova/nova-scheduler.log

Log entries pertaining to the scheduler, its assignment of tasks to nodes, and
messages from the queue

Chapter 12

305

ff nova-api: /var/log/nova/nova-api.log

Log entries regarding user interaction with OpenStack as well as messages regarding
interaction with other components of OpenStack

ff nova-cert: /var/log/nova/nova-cert.log

Entries regarding the nova-cert process

ff nova-console: /var/log/nova/nova-console.log

Details about the nova-console VNC service

ff nova-consoleauth: /var/log/nova/nova-consoleauth.log

Authentication details related to the nova-console service

ff nova-dhcpbridge: /var/log/nova/nova-dhcpbridge.log

Network information regarding the dhcpbridge service

OpenStack Dashboard logs
OpenStack Dashboard (Horizon) is a web application that runs through Apache by default, so
any errors and access details will be in the Apache logs. These can be found in /var/log/
apache2/*.log, which will help you understand who is accessing the service as well as the
report on any errors seen with the service.

OpenStack Storage logs
OpenStack Object Storage (Swift) writes logs to syslog by default. On an Ubuntu system,
these can be viewed in /var/log/syslog. On other systems, these might be available at /
var/log/messages.

The OpenStack Block Storage service, Cinder, will produce logs in /var/log/cinder by
default. The following list is a breakdown of the log files:

ff cinder-api: /var/log/cinder/cinder-api.log

Details about the cinder-api service

ff cinder-scheduler: /var/log/cinder-scheduler.log

Details related to the operation of the Cinder scheduling service

ff cinder-volume: /var/log/cinder/cinder-volume.log

Log entries related to the Cinder volume service

Troubleshooting

306

OpenStack Identity logs
The OpenStack Identity service, Keystone, writes its logging information to /var/log/
keystone/keystone.log. Depending on how you have Keystone configured, the
information in this log file can be very sparse to extremely verbose including complete
plaintext requests.

OpenStack Image Service logs
The OpenStack Image Service Glance stores its logs in /var/log/glance/*.log with a
separate log file for each service. The following is a list of the default log files:

ff api: /var/log/glance/api.log

Entries related to the glance API

ff registry: /var/log/glance/registry.log

Log entries related to the Glance registry service. Things like metadata updates and
access will be stored here depending on your logging configuration.

OpenStack Network Service logs
OpenStack Networking Service, formerly Quantum, now Neutron, stores its log files in /var/
log/quantum/*.log with a separate log file for each service. The following is a list of the
corresponding logs:

ff dhcp-agent: /var/log/quantum/dhcp-agent.log

Log entries pertaining to the dhcp-agent

ff l3-agent: /var/log/quantum/l3-agent.log

Log entries related to the l3 agent and its functionality

ff metadata-agent: /var/log/quantum/metadata-agent.log

This file contains log entries related to requests Quantum has proxied to the Nova
metadata service.

ff openvswitch-agent: /var/log/quantum/openvswitch-agent.log

Entries related the the operation of Open vSwitch. When implementing OpenStack
Networking, if you use a different plugin, its log file will be named accordingly.

ff server: /var/log/quantum/server.log

Details and entries related to the quantum API service

ff OpenVSwitch Server: /var/log/openvswitch/ovs-vswitchd.log

Details and entries related to the OpenVSwitch Switch Daemon

Chapter 12

307

Changing log levels
By default each OpenStack service has a sane level of logging, which is determined by the
level set as Warning. That is, it will log enough information to provide you the status of the
running system as well as some basic troubleshooting information. However, there will be
times that you need to adjust the logging verbosity either up or down to help diagnose an
issue or reduce logging noise.

As each service can be configured similarly, we will show you how to make these changes on
the OpenStack Compute service.

Log-level settings in OpenStack Compute services
To do this, log into the box where the OpenStack Compute service is running and execute the
following commands:

sudo vim /etc/nova/logging.conf

Change the following log levels to either DEBUG, INFO or WARNING in any of the
services listed:

Log-level settings in other OpenStack services
Other services such as Glance and Keystone currently have their log-level settings within their
main configuration files such as /etc/glance/glance-api.conf. Adjust the log levels by
altering the following lines to achieve INFO or DEBUG levels:

Restart the relevant service to pick up the log-level change.

Troubleshooting

308

How it works...
Logging is an important activity in any software, and OpenStack is no different. It allows an
administrator to track down problematic activity that can be used in conjunction with the
community to help provide a solution. Understanding where the services log and managing
those logs to allow someone to identify problems quickly and easily are important.

Checking OpenStack services
OpenStack provides tools to check on its services. In this section, we'll show you how to check
the operational status of these services. We will also use common system commands to
check whether our environment is running as expected.

Getting ready
To check our OpenStack Compute host, we must log into that server, so do this now before
following the given steps.

How to do it...
To check that OpenStack Compute is running the required services, we invoke the
nova-manage tool and ask it various questions about the environment, as follows:

Checking OpenStack Compute Services
To check our OpenStack Compute services, issue the following command:

sudo nova-manage service list

You will see an output similar to the following. The :-) indicates that everything is fine.

nova-manage service list

The fields are defined as follows:

ff Binary: This is the name of the service that we're checking the status of.

ff Host: This is name of the server or host where this service is running.

Chapter 12

309

ff Zone: This refers to the OpenStack Zone that is running that service. A zone can run
different services. The default zone is called nova.

ff Status: This states whether or not an administrator has enabled or disabled that
service.

ff State: This refers to whether that running service is working or not.

ff Updated_At: This indicates when that service was last checked.

If OpenStack Compute has a problem, you will see XXX in place of :-). The following command
shows the same:

nova-compute compute.book nova enabled XXX 2013-06-18 16:47:35

If you do see XXX, the answer to the problem will be in the logs at /var/log/nova/.

If you get intermittent XXX and :-) for a service, first
check whether the clocks are in sync.

OpenStack Image Service (Glance)
The OpenStack Image Service, Glance, while critical to the ability of OpenStack to provision
new instances, does not contain its own tool to check the status of the service. Instead, we
rely on some built-in Linux tools. OpenStack Image Service (Glance) doesn't have a tool to
check its running services, so we can use some system commands instead, as follows:

ps -ef | grep glance

netstat -ant | grep 9292.*LISTEN

These should return process information for Glance to show it's running, and 9292 is the
default port that should be open in the LISTEN mode on your server, which is ready for use.
The output of these commands will be similar to the following:

ps -ef | grep glance

This produces output like the following:

To check if the correct port is in use, issue the following command:

netstat -ant | grep 9292

tcp 0 0 0.0.0.0:9292 0.0.0.0:* LISTEN

Troubleshooting

310

Other services that you should check
Should Glance be having issues while the above services are in working order, you will want to
check the following services as well:

ff rabbitmq: For rabbitmq, run the following command:
sudo rabbitmqctl status

For example, output from rabbitmqctl (when everything is running OK) should look
similar to the following screenshot:

If rabbitmq isn't working as expected, you will see output similar to the following
indicating that the rabbitmq service or node is down:

ff ntp: For ntp (Network Time Protocol, for keeping nodes in time-sync), run the
following command:
ntpq -p

ntp is required for multi-host OpenStack environments but it may
not be installed by default. Install the ntp package with sudo
apt-get install -y ntp)

Chapter 12

311

This should return output regarding contacting NTP servers, for example:

ff MySQL Database Server: For MySQL Database Server, run the following
commands:

PASSWORD=openstack

mysqladmin -uroot –p$PASSWORD status

This will return some statistics about MySQL, if it is running, as shown in the
following screenshot:

Checking OpenStack Dashboard (Horizon)
Like the Glance Service, the OpenStack Dashboard service, Horizon, does not come with a
built-in tool to check its health.

Horizon, despite not having a built-in utility to check service health, does rely on the Apache
web server to serve pages. To check the status of the service then, we check the health of
the web service. To check the health of the Apache web service, log into the server running
Horizon and execute the following command:

ps -ef | grep apache

This command produces output like the following screenshot:

Troubleshooting

312

To check that Apache is running on the expected port, TCP Port 80, issue the
following command:

netstat -ano | grep :80

This command should show the following output:

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN off (0.00/0/0)

To test access to the web server from the command line issue the following command:

telnet localhost 80

This command should show the following output:

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Checking OpenStack Identity (Keystone)
Keystone comes with a client side implementation called the python-keystone client. We use
this tool to check the status of our Keystone services.

To check that Keystone is running the required services, we invoke the keystone command:

keystone user-list

This produces output like the following screenshot:

Additionally, you can use the following commands to check the status of Keystone. The
following command checks the status of the service:

ps -ef | grep keystone

Chapter 12

313

This should show output similar to the following:

keystone 5441 1 0 Jun20 ? 00:00:04 /usr/bin/python /usr/bin/keystone-all

Next you can check that the service is listening on the network. The following command can
be used:

netstat -anlp | grep 5000

This command should show output like the following:

tcp 0 0 0.0.0.0:5000 0.0.0.0: LISTEN 54421/python

Checking OpenStack Networking (Neutron)
When running the OpenStack Networking service, Neutron, there are a number of services
that should be running on various nodes. These are depicted in the following diagram:

On the Controller node, check the Quantum Server API service is running on TCP Port
9696 as follows:

sudo netstat -anlp | grep 9696

The command brings back output like the following:

tcp 0 0 	 0.0.0.0:9696 0.0.0.0:* LISTEN 22350/python

On the Compute nodes, check the following services are running using the ps command:

ff ovsdb-server

ff ovs-switchd

ff quantum-openvswitch-agent

Troubleshooting

314

For example, run the following command:

ps -ef | grep ovsdb-server

On the Network node, check the following services are running:

ff ovsdb-server

ff ovs-switchd

ff quantum-openvswitch-agent

ff quantum-dhcp-agent

ff quantum-l3-agent

ff quantum-metadata-agent

To check our Neutron agents are running correctly, issue the following command from
the Controller host when you have the correct OpenStack credentials sourced into your
environment:

quantum agent-list

This will bring back output like the following screenshot when everything is running correctly:

Checking OpenStack Block Storage (Cinder)
To check the status of the OpenStack Block Storage service, Cinder, you can use the
following commands:

ff Use the following command to check if Cinder is running:
ps -ef | grep cinder

This command produces output like the following screenshot:

Chapter 12

315

ff Use the following command to check if iSCSI target is listening:
netstat -anp | grep 3260

This command produces output like the following:
tcp 0 0 0.0.0.0:3260 0.0.0.0:* LISTEN 10236/tgtd

ff Use the following command to check that the Cinder API is listening on the network:

netstat -an | grep 8776

This command produces output like the following:
tcp 0 0.0.0.0:8776 0.0.0.0:* LISTEN

ff To validate the operation of the Cinder service, if all of the above is functional, you
can try to list the volumes Cinder knows about using the following:
cinder list

This produces output like the following:

Checking OpenStack Object Storage (Swift)
The OpenStack Object Storage service, Swift, has a few built-in utilities that allow us to check
its health. To do so, log into your Swift node and run the following commands:

ff Use the following command for checking the Swift Service

�� Using Swift Stat:
swift stat

This produces output like the following:

�� Using PS:

Troubleshooting

316

There will be a service for each configured container,
account, object-store.

ps -ef | grep swift

This should produce output like the following screenshot:

ff Use the following command for checking the Swift API:
ps -ef | grep swift-proxy

This should produce the following screenshot:

ff Use the following command for checking if Swift is listening on the network:

netstat -anlp | grep 8080

This should produce output like the following:
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN
9818/python

How it works...
We have used some basic commands that communicate with OpenStack services to
show they're running. This elementary level of checking helps with troubleshooting our
OpenStack environment.

Troubleshooting OpenStack
Compute services

OpenStack Compute services are complex, and being able to diagnose faults is an essential
part of ensuring the smooth running of the services. Fortunately, OpenStack Compute
provides some tools to help with this process, along with tools provided by Ubuntu to help
identify issues.

Chapter 12

317

How to do it...
Troubleshooting OpenStack Compute services can be a complex issue, but working through
problems methodically and logically will help you reach a satisfactory outcome. Carry out the
following suggested steps when encountering the different problems presented.

Steps for when you cannot ping or SSH to an instance
1.	 When launching instances, we specify a security group. If none is specified, a security

group named default is used. These mandatory security groups ensure security is
enabled by default in our cloud environment, and as such, we must explicitly state
that we require the ability to ping our instances and SSH to them. For such a basic
activity, it is common to add these abilities to the default security group.

2.	 Network issues may prevent us from accessing our cloud instances. First, check that
the compute instances are able to forward packets from the public interface to the
bridged interface. Use the following command for the same:
sysctl -A | grep ip_forward

3.	 net.ipv4.ip_forward should be set to 1. If it isn't, check that /etc/sysctl.
conf has the following option uncommented. Use the following command for it:
net.ipv4.ip_forward=1

4.	 Then, run to following command to pick up the change:
sudo sysctl -p

5.	 Other network issues could be routing issues. Check that we can communicate with
the OpenStack Compute nodes from our client and that any routing to get to these
instances has the correct entries.

6.	 We may have a conflict with IPv6, if IPv6 isn't required. If this is the case, try adding
--use_ipv6=false to your /etc/nova/nova.conf file, and restart the nova-
compute and nova-network services. We may also need to disable IPv6 in the
operating system, which can be achieved using something like the following line in
/etc/modprobe.d/ipv6.conf:
install ipv6 /bin/true

7.	 If using OpenStack Neutron, check the status of the neutron services on the host and
the correct IP namespace is being used (see Troubleshooting OpenStack Networking).

8.	 Reboot your host.

Troubleshooting

318

Methods for viewing the Instance Console log
1.	 When using the command line, issue the following commands:

nova list

nova console-log INSTANCE_ID

For example:
nova console-log ee0cb5ca-281f-43e9-bb40-42ffddcb09cd

2.	 When using Horizon, carry out the following steps:

1.	 Navigate to the list of instance and select an instance.

2.	 You will be taken to an Overview screen. Along the top of the Overview
screen is a Log tab. This is the console log for the instance.

3.	 When viewing the logs directly on a nova-compute host, look for the following file:

The console logs are owned by root, so only an administrator can do this. They are
placed at: var/lib/nova/instances/<instance_id>/console.log.

Chapter 12

319

Instance fails to download meta information
If an instance fails to communicate to download the extra information that can be supplied
to the instance meta-data, we can end up in a situation where the instance is up but you're
unable to log in, as the SSH key information is injected using this method.

Viewing the console log will show output like in the following screenshot:

If you are not using Neutron, ensure the following:

1.	 nova-api is running on the Controller host (in a multi_host environment,
ensure there's a nova-api-metadata and a nova-network package installed and
running on the Compute host).

2.	 Perform the following iptables check on the Compute node:
sudo iptables -L -n -t nat

We should see a line in the output like in the following screenshot:

3.	 If not, restart your nova-network services and check again.

4.	 Sometimes there are multiple copies of dnsmasq running, which can cause this
issue. Ensure that there is only one instance of dnsmasq running:

ps -ef | grep dnsmasq

This will bring back two process entries, the parent dnsmasq process and a spawned
child (verify by the PIDs). If there are any other instances of dnsmasq running, kill
the dnsmasq processes. When killed, restart nova-network, which will spawn
dnsmasq again without any conflicting processes.

If you are using Neutron:

The first place to look is in the /var/log/quantum/metadata_agent.log on the
Network host. Here you may see Python stack traces that could indicate a service isn't
running correctly. A connection refused message may appear here suggesting the metadata
agent running on the Network host is unable to talk to the Metadata service on the
Controller host via the Metadata Proxy service (also running on the Network host).

Troubleshooting

320

The metadata service runs on port 8775 on our Controller host, so checking that is running
involves checking the port is open and it's running the metadata service. To do this on the
Controller host, run the following:

sudo netstat -antp | grep 8775

This will bring back the following output if everything is OK:

tcp 0 0 0.0.0.0:8775 0.0.0.0:* LISTEN

If nothing is returned, check that the nova-api service is running and if not, start it.

Instance launches; stuck at Building or Pending
Sometimes, a little patience is needed before assuming the instance has not booted, because
the image is copied across the network to a node that has not seen the image before. At
other times though, if the instance has been stuck in booting or a similar state for longer than
normal, it indicates a problem. The first place to look will be for errors in the logs. A quick way
of doing this is from the controller server and by issuing the following command:

sudo nova-manage logs errors

A common error that is usually present is usually related to AMQP being unreachable.
Generally, these errors can be ignored unless, that is, you check the time stamp and these
errors are currently appearing. You tend to see a number of these messages related to when
the services first started up so look at the timestamp before reaching conclusions.

This command brings back any log line with the ERROR as log level, but you will need to
view the logs in more detail to get a clearer picture.

A key log file, when troubleshooting instances that are not booting properly, will be available
on the controller host at /var/log/nova/nova-scheduler.log. This file tends to produce
the reason why an instance is stuck in Building state. Another file to view further information
will be on the compute host at /var/log/nova/nova-compute.log. Look here at the time
you launch the instance. In a busy environment, you will want to tail the log file and parse for
the instance ID.

Check /var/log/nova/nova-network.log (for Nova Network) and /var/log/
quantum/*.log (for Neutron) for any reason why instances aren't being assigned IP
addresses. It could be issues around DHCP preventing address allocation or quotas
being reached.

Chapter 12

321

Error codes such as 401, 403, 500
The majority of the OpenStack services are web services, meaning the responses from the
services are well defined.

40X: This refers to a service that is up but responding to an event that is produced by some
user error. For example, a 401 is an authentication failure, so check the credentials used
when accessing the service.

500: These errors mean a connecting service is unavailable or has caused an error that has
caused the service to interpret a response to cause a failure. Common problems here are
services that have not started properly, so check for running services.

If all avenues have been exhausted when troubleshooting your environment, reach out to
the community, using the mailing list or IRC, where there is a raft of people willing to offer
their time and assistance. See the Getting help from the community recipe at the end of this
chapter for more information.

Listing all instances across all hosts
From the OpenStack controller node, you can execute the following command to get a list of
the running instances in the environment:

sudo nova-manage vm list

To view all instances across all tenants, as a user with an admin role execute the following
command:

nova list --all-tenants

These commands are useful in identifying any failed instances and the host on which it is
running. You can then investigate further.

How it works...
Troubleshooting OpenStack Compute problems can be quite complex, but looking in
the right places can help solve some of the more common problems. Unfortunately, like
troubleshooting any computer system, there isn't a single command that can help identify
all the problems that you may encounter, but OpenStack provides some tools to help you
identify some problems. Having an understanding of managing servers and networks will help
troubleshoot a distributed cloud environment such as OpenStack.

There's more than one place where you can go to identify the issues, as they can stem from
the environment to the instances themselves. Methodically working your way through the
problems though will help lead you to a resolution.

Troubleshooting

322

Troubleshooting OpenStack Object
Storage services

OpenStack Storage service (Swift) is built for highly available storage, but there will be times
when something will go wrong, from authentication issues to failing hardware.

How to do it...
Carry out the following steps when encountering the problems presented.

Authentication issues
Authentication issues in Swift occur when a user or a system has been configured with the
wrong credentials. A Swift system that has been supported by OpenStack Authentication
service (Keystone) will require performing authentication steps against Keystone manually
as well as viewing logs during the transactions. Check the Keystone logs for evidence of user
authentication issues for Swift.

The user will see the following message with authentication issues:

If Swift is working correctly but Keystone isn't, skip to the Troubleshooting OpenStack
Authentication recipe.

Swift can add complexity to authentication issues when ACLs have been applied to containers.
For example, a user might not have been placed in an appropriate group that is allowed
to perform that function on that container. To view a container's ACL, issue the following
command on a client that has the Swift tool installed:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password stat container

The Read ACL: and Write ACL: information will show which roles are allowed to perform
those actions.

To check a user's roles, run the following set of commands on the Keystone server:

Administrator Credentials
export OS_USERNAME=admin
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0

export OS_TENANT_NAME=cookbook

Chapter 12

323

Get User ID

keystone user-list

Get Tenant ID

keystone tenant-list

Use the user-id and tenant-id to get the roles for
that user in that tenant

keystone -I admin -K openstack -N http://172.16.0.200:5000/v2.0/ -T
cookbook role-list --user user-id --tenant tenant-id

Now compare with the ACL roles assigned to the container.

Handling drive failure
When a drive fails in an OpenStack Storage environment, you must first ensure the drive is
unmounted so Swift isn't attempting to write data to it. Replace the drive and rebalance the
rings. This is covered in more detail in the Detecting and Replacing Failed Hard Drives recipe
in Chapter 6, Administering OpenStack Storage.

Handling server failure and reboots
The OpenStack Storage service is very resilient. If a server is out of action for a couple of
hours, Swift can happily work around this server being missing from the ring. Any longer than
a couple of hours though, and the server will need removing from the ring. To do this, follow
the steps mentioned in the Removing nodes from a cluster recipe in Chapter 6, Administering
OpenStack Storage.

How it works...
The OpenStack Storage service, Swift, is a robust object storage environment, and as such,
handles a relatively large number of failures within this environment. Troubleshooting Swift
involves running client tests, viewing logs, and in the event of failure, identifying what the best
course of action is.

Troubleshooting OpenStack Dashboard
The OpenStack dashboard, Horizon, provides the web UI that your end users will use to
consume your OpenStack environment, so keeping it running is critical. There are a few
instances however, where Horizon may decide to go awry.

Troubleshooting

324

How to do it…
When the Horizon goes awry you can check the following.

Unable to log into the OpenStack Dashboard
If you find you are unable to log into Horizon, check you have a valid user/password. To do
this, log into a node that has the python-keystone client and attempt to authenticate with
the same user:

 export OS_TENANT_NAME=cookbook

 export OS_USERNAME=admin

 export OS_PASSWORD=openstack

 export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

 keystone user-list

Next, if you are able to log in, but are presented with a Something went wrong screen,
validate all services listed in Keystone are accessible to the server running horizon. To do this,
log into the horizon server, and if you do not have the python-keystone client, install it:

 sudo apt-get install -y python-keystoneclient

 export OS_TENANT_NAME=cookbook

 export OS_USERNAME=admin

 export OS_PASSWORD=openstack

 export OS_AUTH_URL=http://172.16.0.200:5000/v2.0/

 for i in 'keystone endpoint-list | grep http | awk {'print
 $6'} | cut -d / -f 3,3 | cut -d : -f 1'; do ping -c 1 $i; done

Chapter 12

325

Additionally, you can edit the settings file for Horizon to enable more detailed logging
and further troubleshooting by changing the following LOGGING lines section in /etc/
openstack-dashboard/local_settings.py.

LOGGING = {

 'version': 1,

 # When set to True this will disable all logging except

 # for loggers specified in this configuration dictionary. Note

 # that if nothing is specified here and disable_existing_loggers

 # is True, django.db.backends will still log unless it is

 # disabled explicitly.

 'disable_existing_loggers': False,

 'handlers': {

 'null': {

 'level': 'DEBUG',

 'class': 'django.utils.log.NullHandler',

 },

 'console': {

 # Set the level to "DEBUG" for verbose output logging.

 'level': 'INFO',

 'class': 'logging.StreamHandler',

 },

 },

 'loggers': {

 # Logging from django.db.backends is VERY verbose, send to null

 # by default.

 'django.db.backends': {

 'handlers': ['null'],

 'propagate': False,

 },

 'requests': {

 'handlers': ['null'],

 'propagate': False,

 },

Troubleshooting

326

 'horizon': {

 'handlers': ['console'],

 'propagate': False,

 },

 'openstack_dashboard': {

 'handlers': ['console'],

 'propagate': False,

 },

 'novaclient': {

 'handlers': ['console'],

 'propagate': False,

 },

 'keystoneclient': {

 'handlers': ['console'],

 'propagate': False,

 },

 'glanceclient': {

 'handlers': ['console'],

 'propagate': False,

 },

 'nose.plugins.manager': {

 'handlers': ['console'],

 'propagate': False,

 }

 }

}

How it works…
With Horizon being dependent on the good health of your OpenStack environment, most
horizon issues will be solved as you troubleshoot other services. That said, with the guidance
in this section you will be able to find which service is causing horizon angst and allow your
users back into the system.

Chapter 12

327

Troubleshooting OpenStack Authentication
The OpenStack Authentication service (Keystone) is a complex service, as it has to deal with
underpinning the authentication and authorization for the complete cloud environment.
Common problems include misconfigured endpoints, incorrect parameters being stored, and
general user authentication issues, which involve resetting passwords or providing further
details to the end user.

Getting ready
Administrator access is required to troubleshoot Keystone, so we first configure our
environment, so that we can simply execute the relevant Keystone commands.

Administrator Credentials
export OS_USERNAME=admin
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0

export OS_TENANT_NAME=cookbook

How to do it...
Carry out the following steps when encountering the problems presented.

Misconfigured endpoints
Keystone is the central service that directs authenticated users to the correct service, so
it's vital that the users be sent to the correct location. Symptoms include HTTP 500 error
messages in various logs regarding the services that are being accessed and clients timing
out trying to connect to network services that don't exist. To verify your endpoints in each
region, perform the following command:

keystone endpoint-list

We can drill down into specific service types with the following command. For example, to
show adminURL for the compute service type in all regions:

keystone endpoint-get --service compute --endpoint_type adminURL

An alternative to listing the endpoints in this format is to list the catalog, which outputs the
details in a more human-readable way:

keystone catalog

This provides a convenient way of seeing the endpoints configured.

Troubleshooting

328

Authentication issues
From time to time, users will have trouble authenticating against Keystone due to
forgotten or expired details or unexpected failure within the authentication system.
Being able to identify such issues will allow you to restore service or allow the user to
continue using the environment.

The first place to look will be the relevant logs. This includes the /var/log/nova logs, the /
var/log/glance logs (if related to images), as well as the /var/log/keystone logs.

Troubleshooting accounts might include missing accounts, so view the users on the system
using the following command:

keystone user-list

After displaying the user list to ensure an account exists for the user, we can get further
information on a particular user by issuing, for example, the following command, after
retrieving the user ID of a particular user:

keystone user-get 68ba544e500c40668435aa6201e557e4

This will display output similar to the following screenshot:

This allows us to verify that the user has a valid account in a particular tenant.

If a user's password needs resetting, we can execute the following command after getting the
user ID, to set a user's password to (for example) openstack:

keystone user-password-update \

 --pass openstack \

 68ba544e500c40668435aa6201e557e4

If it turns out a user has been set to disabled, we can simply re-enable the account with the
following command:

keystone user-update --enabled true 68ba544e500c40668435aa6201e557e4

Chapter 12

329

There could be times when the account is working but problems exist on the client side.
Before looking at Keystone for the issue, ensure your environment is set up correctly for the
user account you are working with, in other words, set the following environment variables
(example using a user called kevinj):

export OS_USERNAME=kevinj
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0

export OS_TENANT_NAME=cookbook

How it works...
User authentication issues can be client-side or server-side, and when some basic
troubleshooting has occurred on the client, we can use Keystone commands to find
out why someone's user journey has been interrupted. With this, we are able to view
and update user details, set passwords, set them into the appropriate tenants, and
disable or enable them, as required.

Troubleshooting OpenStack Networking
OpenStack Networking is now a complex service with the introduction of Neutron, as it now
gives users the ability to define and create their own networking within their cloud environment.
Common problems for an OpenStack administrator include misconfigured Neutron installations,
routing problems and switch plugin problems. Problems for users include misunderstanding the
capabilities of Neutron or limitations imposed by administrators.

Getting ready
We'll be troubleshooting Neutron installations so administrator access is required to
troubleshoot this service. Ensure you're logged in as root on our controller, compute,
and network hosts and configure our environment to enable us to run various commands.

To log into our hosts that were created using Vagrant issue the following in separate shells:

vagrant ssh controller

vagrant ssh compute

vagrant ssh network

In our Controller and Network host sessions, as root, issue the following:

Administrator Credentials
export OS_USERNAME=admin
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.200:5000/v2.0

export OS_TENANT_NAME=cookbook

Troubleshooting

330

How to do it...
Carry out the following steps when encountering the problems presented.

Cloud-init reporting Connection Refused when accessing
Metadata
In an instance's console log (when you issue nova console-log INSTANCE_ID) you may
see lines such as:

There are a number of possibilities for this, but the result will be the same and we will be
unable to log into our cloud instance because the instance was unable to have its SSH key
injected into it.

Check that you have configured our physical interfaces on our network and compute nodes
for use with OVS. As part of the installation and configuration, ensure that you have run the
following command:

ovs-vsctl add-port br-eth1 eth1

Where eth1 is our physical interface and br-eth1 is the bridge created on this interface.

Check that your instance can route to the 169.254.169.254 metadata host from the
gateway of the instance, and if not create a route to this network. When subnets are
created and a gateway is specified, it is assumed that this gateway address can route to
the 169.254.169.254 address. If it can't, you will see errors described in the sections we
saw. To create a 169.254.169.254 route on the instance itself, create the subnet with the
following options:

quantum subnet-create demoNet1 \

 10.1.0.0/24 \

 --name snet1 \

 --no-gateway \

 --host_routes type=dict list=true \

 destination=0.0.0.0/0,nexthop=10.1.0.1 \

 --allocation-pool start=10.1.0.2,end=10.1.0.254

By specifying --no-gateway, Neutron will inject the 169.254.169.254 route into the
instance so it shows up in the instance routing table, but to provide a default gateway we
specify a destination of 0.0.0.0/0 and if appropriate the next hop in the route to allow that
instance access elsewhere.

Chapter 12

331

Submitting Bug reports
OpenStack is a hugely successful open source, public and private cloud framework. It has
gained this momentum by the individuals and organizations downloading and contributing
to it. By using the software in a vast array of environments and scenarios, and running the
software on a myriad of hardware, you will invariably encounter bugs. In an open source
project, the best thing we can now do is tell the developers about it so they can develop or
suggest a solution for us.

How to do it...
The OpenStack project is available through LaunchPad. LaunchPad is an open source suite of
tools that helps people and teams to work together on software projects and is accessible at
http://launchpad.net/, so the first step is to create an account.

Creating an account on LaunchPad
Steps for creating and account on LaunchPad are as follows:

1.	 Creating an account on LaunchPad is easy. First, head over to https://login.
launchpad.net/+new_account (or navigate from the home page to the Login/
Register link).

2.	 Fill in your name, e-mail address, and password details, as shown in the
following screenshot:

Troubleshooting

332

3.	 We will then be sent an e-mail with a link to complete the registration. Click on this to
be taken to a confirmation page.

4.	 We will then be taken to an account page, but no further details need to be
entered here.

Submitting bug reports through LaunchPad
Now that we have an account on LaunchPad, we can submit bug reports. The following links
take us directly to the bug report sections of those projects:

ff Nova: https://bugs.launchpad.net/nova/+filebug

ff Swift: https://bugs.launchpad.net/swift/+filebug

ff Cinder: https://bugs.launchpad.net/cinder/+filebug

ff Glance: https://bugs.launchpad.net/glance/+filebug

ff Keystone: https://bugs.launchpad.net/keystone/+filebug

ff Dashboard: https://bugs.launchpad.net/horizon/+filebug

ff Neutron: https://bugs.launchpad.net/neutron/+filebug

On submitting a short summary, a search is made to see if a similar bug exists. If it does, click
on the bug and then ensure you click on the This bug affects X people. Does this bug affect
you? link. If multiple people report that they are affected by a bug, its status changes from
reported by a single person to confirmed, helping the Bug Triage team with their work. Please
ensure you add any relevant additional information on the bug, in support of the issues you
are facing.

If the bug doesn't exist, we will be presented with a form that has a one-liner Summary field
and a free-form textbox in which to put in the required information.

On submitting bugs, try to follow these rules:

ff Include the OS platform, architecture, and software package versions

ff Give step-by-step details on how to recreate the bug

ff Enter what you expected to happen

ff Enter what actually happened instead

ff Be precise—developers like precision

Chapter 12

333

Useful commands to help complete a bug report
The following is a list of useful commands that will help you in the completion of the
bug report:

ff OS System Version: lsb_release -r

ff Architecture: uname -i

ff Package version:

dpkg -l | grep name_of_package

dpkg -s name_of_package | grep Version

Pasting logs
Sometimes, there will be a need to submit logging information to support your bug report.
This information can be quite lengthy, so rather than including the text from such logs, within
the bug report, it is encouraged to use a text paste service, which will provide you with a
unique URL that you can use to reference the information within your bug report. For this
purpose, you can use the service at http://paste.openstack.org/.

Ensure you sanitize any data that you paste in public. This includes
removing any sensitive data such as IPs, usernames, and passwords.

Once a bug is submitted, an e-mail will be sent to the e-mail address used to register with
LaunchPad, and any subsequent updates in relation to the bug will be sent to this e-mail
address, allowing us to track its progress all the way through to a fix being released.

How it works...
OpenStack is developed by a relatively small number of people, compared to the number
of people the community that end up downloading and using the software. This means
the software gets used in scenarios that developers can't feasibly test or just didn't see as
possible at the time. The net result is that bugs often come out during this time. Being able
to report these bugs is vital, and this is why open source software development is so hugely
successful in creating proven and reliable software.

OpenStack's development lives on LaunchPad, so all bug tracking and reporting is done using
this service. This provides a central tool for the global community and allows end users to
communicate with the relevant projects to submit bugs.

Submitting bugs is a vital element to an open source project. It allows you to shape the future
of the project as well as be part of the ecosystem that is built around it.

Troubleshooting

334

It is important to give as much information as possible to the developers when submitting
bugs. Be precise and ensure that the steps to recreate the bug are easy to follow and provide
an explanation of the environment you are working in, to allow the bug to be recreated. If it
can't be recreated, it can't be fixed.

See also
You can find out more information about the OpenStack community at:
http://www.openstack.org/community/.

Getting help from the community
OpenStack would not be where it is today without the ever-growing community of businesses,
sponsors, and individuals. As with many large OSS projects, support is fantastic, meaning
round-the-clock attention to requests for help, which can sometimes exceed the best efforts of
paid-for support.

How to do it...
There are a number of ways to reach out for support from the excellent OpenStack
community. They are explained in the following sections.

IRC support
Internet Relay Chat has been the mainstay of the Internet since the beginning, and
collaboration from developers and users can be found on the Freenode IRC network.

OpenStack has a channel (or a room) on the Freenode IRC network called #openstack.

There are two ways of accessing IRC, either through the web interface or by using an
IRC client:

ff IRC access using a web browser

1.	 Accessing the #openstack channel, using a web browser, can be achieved
at http://webchat.freenode.net/.

2.	 Enter #openstack as the channel.

3.	 Choose a username for yourself.

4.	 Complete the CAPTCHA and you will be placed into the
#openstack channel.

Chapter 12

335

ff IRC access using an IRC client

1.	 Download a suitable IRC client for your operating system (for example,
Xchat).

2.	 When loading up your client, choose a username (and enter a password if
you have registered your username) and connect to the Freenode network
(irc.freenode.net).

3.	 When connected, type the following command to join
#openstack:

 /j #openstack

4.	 We will now be in the #openstack channel.

Mailing list
Subscribing to the mailing list allows you to submit and respond to queries where an instant
response might not be required and is useful if you need your question to reach more
members than the relatively smaller number that is on IRC.

To subscribe to the mailing list, head over to https://launchpad.net/openstack, where
you will see an option to subscribe to the mailing list.

You will need to create a LaunchPad ID and be a member of the
OpenStack project (see the Submitting Bug reports recipe on
submitting bugs on how to do this).

Pasting logs
When asking for help, it usually involves copying logs from your environment and sharing
them with the community. To help facilitate this, a web service has been created that allows
you to paste the log entries that can be referred to in an IRC chat or in an e-mail without
having to paste them directly. This can be found at http://paste.openstack.org/.
When you create a new paste, you are given a unique URL that you can then refer to for the
information instead.

Ensure you sanitize any data that you paste in public. This includes
removing any sensitive data such as IPs, usernames, and passwords.

Troubleshooting

336

How it works...
The OpenStack community is what makes OpenStack what it is. It is made up of developers,
users, testers, companies, and individuals with a vested interest in ensuring OpenStack's
success. There are a number of useful places to ask for help when it comes to community
support. This includes IRC and the mailing list.

You are encouraged to post and respond to requests in IRC and on the mailing list, as there
are likely to be many people wanting the same questions answered. There will also be the
development and project teams wanting to understand what is causing issues so they can
help address them.

See also
You can find out more information about the OpenStack community, at
http://www.openstack.org/community/.

13
Monitoring

In this chapter, we will cover:

ff Monitoring OpenStack services with Nagios

ff Monitoring Compute services with Munin

ff Monitoring instances using Munin and Collectd

ff Monitoring the storage service using StatsD/Graphite

ff Monitoring MySQL with Hyperic

Introduction
There are a number of ways to monitor computer systems and their services, but the
principles remain. Adequate monitoring and alerting of services is the only way to ensure
we know there is a problem, before our customers. From SNMP traps to agents running on
machines specific to the services running, configuration of monitoring is an essential step in
production deployments of OpenStack. This chapter introduces some tools that can be used
to monitor services within our OpenStack environment.

In researching and developing the monitoring sections for the Grizzly
release, we found a wide and varied state of available tools. To that
end, we are covering Nagios in this chapter and will continue to update
openstackcookbook.com with information on other available tools.

Monitoring

338

Monitoring OpenStack services with Nagios
Nagios is an open source, mature, and robust network and system monitoring application.
It is comprrised of a Nagios server and a number of plugins, or checks. Plugins can be run
either locally to the Nagios server, or as we will be installing them, with the NRPE (Nagios
Remote Plugin Execution) plugin. The NRPE plugin allows us to run agent-like checks on
remote systems.

Getting ready
We will be configuring Nagios on a server that has access to our OpenStack Compute
environment hosts with IP address 172.16.0.212. Ensure this server has enough RAM,
disk, and CPU capacity for the environment you are running. As a bare minimum in a test
environment, it is possible to run this on a VM with 1vCPU, 1.5 GB of RAM, and 8 GB of
disk space.

How to do it...
To set up Nagios with OpenStack, carry out the following steps:

1.	 Install Nagios server.

2.	 Configure the NRPE plugin on the nodes.

3.	 Configure Nagios with OpenStack checks.

Nagios server
The Nagios server provides the web interface as well as monitors the services. Before we can
start monitoring with Nagios, we must install it as follows:

1.	 Configure a server with Ubuntu 12.04 64 bit Version with access to the servers in our
OpenStack environment.

2.	 Install Nagios from the Ubuntu repositories:
sudo apt-get update

sudo apt-get -y install nagios3 nagios-nrpe-plugin

3.	 The installation is interactive and will prompt us to fill in various options. When
presented with Postfix Configuration, select Local only as the mail delivery option
if you have no other mail services configured in your environment. This will send all
alerts to root on the local box. This is shown as follows:

Chapter 13

339

If you are installing Nagios in an automated, non-interactive way you
may need to run sudo apt-get -f install to configure Postfix.

4.	 You will then be asked for the host and domain that the local mail delivery will be
sent to. Enter the fully qualified domain name (FQDN) of the host that is running
Nagios. This is shown in the following screenshot:

Monitoring

340

5.	 We will then be asked to enter and confirm a password for the "nagiosadmin"
user, which will be used to log in to the Nagios web interface as shown in the
following screenshot:

6.	 At this stage, we have a basic installation of Nagios that is gathering statistics for the
running machine where we have just installed Nagios. This can be seen if you load up
a web browser and browse to http://nagios.book/nagios3 as shown below:

7.	 Configuration of Nagios server is done in the /etc/nagios3/conf.d/*.cfg file.
Here we will use individual configuration files to provide a definition for each host and
the services it will run.

We can now proceed to configure the nodes, controller and compute.

Chapter 13

341

Configuring NRPE on Nodes
With the Nagios server installed, we can now configure the Nagios NRPE on each node that
we want to monitor:

1.	 We first need to install the nagios-nrpe-server and nagios-plugins-
standard package on our OpenStack hosts. So, for each one we execute the
following:
sudo apt-get update

sudo apt-get -y install nagios-nrpe-server nagios-plugins-standard

2.	 Once installed, we need to configure this so that our Nagios server host is allowed to
get information from the node. To do this, we edit the /etc/nagios/npre.cfg file
and add in an allowed_hosts line. For example, to allow our Nagios server on IP
address 172.16.0.212, we add the following entry in:
allowed_hosts=172.16.0.212

3.	 Additionally, we need to modify the same /etc/nagios/nrpe.cfg file to specify
the commands to be used when running checks. The checks listed will need to be
placed in the same npre.cfg file of the node running the respective service.

On the Controller server
Add the following to /etc/nagios/nrpe.cfg:

command[check_keystone_api]=/usr/lib/nagios/plugins/check_http localhost
-p 5000 -R application/vnd.openstack.identity

command[check_keystone_procs]=/usr/lib/nagios/plugins/check_procs -C
keystone-all -u keystone -c 1:1

command[check_glance_api_procs]=/usr/lib/nagios/plugins/check_procs -C
glance-api -u glance -c 1:4

command[check_glance_registry]=/usr/lib/nagios/plugins/check_procs -C
glance-registry -u glance -c 1:2

command[check_nova_api]=/usr/lib/nagios/plugins/check_http localhost -p
5000 -R application/vnd.openstack.identity

On the Computer server
Add the following to /etc/nagios/nrpe.cfg:

command[check_nova_metadata]=/usr/lib/nagios/plugins/check_procs -C nova-
api-metadata -u nova -c 1:4

command[check_nova_compute]=/usr/lib/nagios/plugins/check_procs -C nova-
compute -u nova -c 1:4

Monitoring

342

For Swift
To check Swift, you will need to install the check_swift plugin in the /usr/lib/nagios/
plugins folder of your swift servers. At the time of writing, this plugin can be downloaded
from: http://exchange.nagios.org/directory/Plugins/Clustering-and-High-
2DAvailability/check_swift/details

This can be set up as followed in the swift server's /etc/nagios/nrpe/nrpe.cfg file:

command[check_swift_api]=/usr/lib/nagios/plugins/check_swift check_
swift -A http://172.16.0.200:5000/v2.0/ -U swift -K swift -V 2 -c nagios

Remaining OpenStack Services
In addition to the above services, you can add additional OpenStack related checks to your
environment using similar check_procs commands and the NRPE server on your various
nodes. Additionally, while outside the scope of this book, there is a robust set of Chef
cookbooks for Nagios so you can integrate monitoring as you scale out your OpenStack build.

Once the lines are in on each of the node's nrpe.cfg files, we can restart the nagios-
npre-server service to pick up the change:

service nagios-nrpe-server restart

Configuring Nagios to monitor OpenStack Nodes
Now that we have configured NRPE checks on each of our OpenStack nodes, we now need to
tell our Nagios server which hosts it should be monitoring with the NRPE plugin. To do this, we
need to create a file for each node in /etc/nagios3/conf.d/ on the Nagios server.

Following is the example file for the controller (/etc/nagios3/conf.d/cookbook-
controller.cfg) nodes:

define host{
 use generic-host
 host_name controller
 alias controller
 address 172.16.0.200
}

define service{
 host_name controller
 check_command check_nrpe_1arg!check_keystone_api
 use generic-service
 notification_period 24x7
 service_description cookbook-keystone
}

Chapter 13

343

define service {
 host_name controller
 check_command check_nrpe_1arg!check_keystone_procs
 use generic-service
 notification_period 24x7
 service_description cookbook-keystone_procs
}
define service {
 host_name controller
 check_command check_nrpe_1arg!check_glance_api_procs
 use generic-service
 notification_period 24x7
 service_description cookbook-glance_api_procs
}
define service {
 host_name controller
 check_command check_nrpe_1arg!check_glance_registry
 use generic-service
 notification_period 24x7
 service_description cookbook-glance_registry
}
define service {
 host_name controller
 check_command check_nrpe_1arg!check_nova_api
 use generic-service
 notification_period 24x7
 service_description cookbook-nova_api
}

Following is the example file for the compute (/etc/nagios3/conf.d/cookbook-
compute.cfg) nodes:

define host{
 use generic-host
 host_name compute
 alias compute
 address 172.16.0.201
}

define service {
 host_name compute
 check_command check_nrpe_1arg!check_nova_compute
 use generic-service
 notification_period 24x7
 service_description cookbook-nova_compute

Monitoring

344

}
define service {
 host_name compute
 check_command check_nrpe_1arg!check_nova_metadata
 use generic-service
 notification_period 24x7
 service_description cookbook-nova-metadata
}

If building checks for the remaining OpenStack services, you will need to configure
them similarly:

How it works...
Nagios is an excellent, open source networked, resource-monitoring tool that can help analyze
resource trends and identify problems with our OpenStack environment. Configuration is very
straightforward, with out of the box configuration providing monitoring checks. By adding in a
few extra configuration options and plugins, we can extend this to monitoring our OpenStack
environment.

Once Nagios has been installed, we have to do a few things to configure it to produce graphed
statistics for our environment:

1.	 Configure the NRPE on each of the individual nodes that we are monitoring to check
for role specific issues (nova-compute). This is configured with the command option in
the /etc/nagios/nrpe/nrpe.cfg file.

2.	 We then define the corresponding hosts on the Nagios server by creating individual
configuration files that describe how and when to run those services. These are
defined in /etc/nagios3/conf.d/*.cfg on the Nagios server.

3.	 Finally, we restart the nrpe-server service on the nodes as well as the nagios server
service on the Nagios server.

See also
ff For further information about Nagios and plugins, visit www.nagios.org.

Chapter 13

345

Monitoring Compute services with Munin
Munin is a network and system monitoring application that outputs graphs through a web
interface. It comprises of a master server that gathers the output from the agents running on
each of our hosts.

Getting ready
We will be configuring Munin on a server that has access to the OpenStack Compute
environment hosts. Ensure this server has enough RAM, disk, and CPU capacity for the
environment you are running. As a bare minimum in a test environment, it is possible to run
this on a VM with 1vCPU, 1.5 GB of RAM, and 8 GB of disk space.

How to do it...
To set up Munin with OpenStack, carry out the following steps:

1.	 Install Munin.

2.	 Configure the Munin nodes.

3.	 Configure OpenStack plugins for Munin.

Munin master server
The Munin master node is the server that provides us with the web interface to view the
collected information about the nodes in your network and must be installed first, as follows:

1.	 Configure a server with Ubuntu 12.04 64 bit Version with access to the servers in our
OpenStack environment.

2.	 Install Munin from the Ubuntu repositories:
sudo apt-get update

sudo apt-get install apache2

sudo apt-get install munin munin-plugins-extra

sudo service apache2 restart

3.	 By default, the Apache configuration for Munin only allows access from 127.0.0.1. To
allow access from our network, we edit /etc/apache2/conf.d/munin and allow
the server(s) or network(s) that can access Munin. For example, to allow access from
172.16.0.0/16, we add the following access line in:
Allow from 172.16.

Monitoring

346

4.	 We reload the Apache service to pick up this change. We do this as follows:
sudo service apache2 reload

5.	 At this stage, we have a basic installation of Munin that is gathering statistics for the
running machine where we have just installed Munin. This can be seen if you load up
a web browser and browse to http://server/munin:

6.	 Configuration of Munin Master is done in the /etc/munin/munin.conf file.
Here, we tell Munin where our OpenStack hosts, which are specified as FQDNs,
are. Munin groups these hosts under the same domain. For example, to add in two
OpenStack hosts that have addresses 172.16.0.200 (openstack1) and 172.16.0.201
(openstack2), we add the following section into the /etc/munin/munin.conf file:

[controller.cloud.test]

 address 172.16.0.200

 use_node_name yes

[openstack2.cloud.test]

 address 172.16.0.201

 use_node_name yes

We can now proceed to configure the nodes that we want to monitor, for example
openstack1 and openstack2.

Chapter 13

347

Munin nodes
With the Munin master server installed, we can now configure the Munin nodes. These have
an agent on them, called munin-node that the master uses to gather the information and
present to the user:

1.	 We first need to install the munin-node package on our OpenStack hosts. So, for
each one we execute the following:
sudo apt-get update

sudo apt-get -y install munin-node munin-plugins-extra

2.	 Once installed, we need to configure this so that our Munin master host is allowed to
get information from the node. To do this, we edit the /etc/munin/munin-node.
conf file and add in an allow line. To allow our master on IP address 172.16.0.253,
we add the following entry:
allow ^172\.16\.0\.253$

3.	 Once that the line is in, we can restart the munin-node service to pick up
the change:

sudo restart munin-node

Monitoring OpenStack Compute services
With Munin master installed, and having a couple of nodes with graphs showing up on the
Master, we can add the plugins to pick up the OpenStack services and graph them. To do this,
we check out some plugins from GitHub.

1.	 We first ensure we have the git client available to us on our OpenStack nodes:
sudo apt-get update

sudo apt-get -y install git

2.	 We can now check out the OpenStack plugins for Munin as they're not yet available in
the munin-plugins-extra package:
git clone https://github.com/munin-monitoring/contrib.git

3.	 This checks out contributed code and plugins to a directory named contrib. We
copy the relevant plugins for the OpenStack services into the Munin plugins directory,
as follows:
cd contrib/plugins

sudo cp nova/* /usr/share/munin/plugins/

sudo cp keystone/* /usr/share/munin/plugins

sudo cp glance/* /usr/share/munin/plugins

Monitoring

348

4.	 Munin-node comes with a utility that allows us to enable appropriate plugins on our
hosts, automatically. We run the following commands to do this:
sudo munin-node-configure --suggest

sudo -i # get root shell

munin-node-configure --shell 2>&1 | egrep -v "^\#" | sh

5.	 The Keystone and Glance plugins don't get picked up automatically, so we add these
to the plugins' directory, manually, with symlinks:
cd /etc/munin/plugins

sudo ln -s /usr/share/munin/plugins/keystone_stats

sudo ln -s /usr/share/munin/plugins/glance_size

sudo ln -s /usr/share/munin/plugins/glance_status

6.	 We also need to add an extra configuration file to sit alongside the OpenStack plugins
called /etc/munin/plugin-conf.d/openstack:
[nova_*]

user nova

[keystone_*]

user keystone

[glance_*]

user glance

7.	 With the appropriate plugins configured, we restart the munin-node service, as
follows, to pick up the change:
sudo restart munin-node

8.	 When the master server refreshes, we see OpenStack services as options and
graphs, which we can click on:

Chapter 13

349

How it works...
Munin is an excellent, open source networked, resource-monitoring tool that can help analyze
resource trends and identify problems with our OpenStack environment. Configuration is
very straightforward, with out of the box configuration providing lots of very useful graphs
from RRD (Round Robin Database) files. By adding in a few extra configuration options and
plugins, we can extend this to monitoring our OpenStack environment.

Once Munin has been installed, we have to do a few things to configure it to produce graphed
statistics for our environment:

1.	 Configure the master Munin server with the nodes we wish to get graphs from.
This is done in the /etc/munin/munin.conf file by using the tree-like structure
domain/host address sections.

2.	 We then configure each node with the munin-node service. This is a service that has
its own configuration file where we have to explicitly set what Munin server can pull
graphs from it. This is set in with the allow line in the /etc/munin/munin.conf file.

3.	 Finally, we configure appropriate plugins for the services that we want to monitor.
With the OpenStack plugins installed, we can monitor the Compute, Keystone,
and Glance services and obtain statistics on the number of instances running, the
number of floating IPs assigned, allocated, and used, and so on.

Monitoring

350

Monitoring instances using Munin
and Collectd

The health of the underlying infrastructure operating our on-premise cloud solution is important,
but of equal importance is to understand the metrics given by the Compute instances
themselves. For this, we can get metrics sent from them by using a monitoring tool called
Collectd, and we can leverage Munin for an overall view of our running virtual instances.

How to do it...
To set Munin and Collectd up, carry out the following steps:

Munin
We can configure Munin to look at more than just the CPU, memory, and disk space of the
host, by invoking the libvirt plugin to query values within the running instances on our
Compute hosts:

1.	 The libvirt munin plugin is conveniently provided by the Ubuntu repositories, so
we grab these in the usual way:
sudo apt-get update

sudo apt-get -y install munin-libvirt-plugins

2.	 Once downloaded, we then configure the munin libvirt plugins on the
Compute host:
cd /etc/munin/plugins

sudo ln -s /usr/share/munin/plugins/libvirt-blkstat

sudo ln -s /usr/share/munin/plugins/libvirt-ifstat

sudo ln -s /usr/share/munin/plugins/libvirt-cputime

sudo ln -s /usr/share/munin/plugins/libvirt-mem

3.	 With the plugins in place, we now need to configure them. This is done by placing
a file in /etc/munin/plugin-conf.d/libvirt, with the following contents:
[libvirt*]

user root

env.address qemu:///system

env.tmpfile /var/lib/munin/plugin-state/libvirt

Chapter 13

351

4.	 Once this is done, we restart the munin-node service, and we will see an additional
category show up in Munin, named Virtual Machine, where we can then see how
much memory, CPU, and disk activity is being consumed as a whole on the host:

Collectd
Collectd is set up in three parts. There is a collectd server that listens over UDP for data sent
from clients. There is the client collectd service that sends the data to the collectd server.
Finally, there is a web interface to Collectd, named collectd-web that allows easy viewing of
the graphs sent from collectd:

Collectd server
1.	 We first install collectd and the required Perl resources in the usual way from

Ubuntu's repositories:
sudo apt-get update

sudo apt-get -y install collectd libjson-perl

2.	 Once installed, we configure the service to listen on a port we choose. The
configuration of collectd is done in /etc/collectd/collectd.conf. In the
following configuration, we listen on UDP port 12345:
Hostname "servername"
Interval 10
ReadThreads 5

LoadPlugin network
<Plugin network>
 Listen "*" "12345"

Monitoring

352

</Plugin>

LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
 Interface "eth0"
</Plugin>
LoadPlugin tcpconns

LoadPlugin rrdtool
<Plugin "rrdtool">
 CacheFlush 120
 WritesPerSecond 50
</Plugin>

Include "/etc/collectd/filters.conf"
Include "/etc/collectd/thresholds.conf"

3.	 We restart the service to pick up these changes:

sudo service collectd restart

Collectd Client
1.	 The collectd client and server use the same package, so we install the client in the

same way.
sudo apt-get update

sudo apt-get -y install collectd libjson-perl

2.	 The configuration file for the guest is the same as for the server, but we specify
different options. Edit /etc/collectd/collectd.conf with the following
contents:
FQDNLookup true
Interval 10
ReadThreads 5
LoadPlugin network
<Plugin network>

Chapter 13

353

 Server "172.16.0.253" "12345"
</Plugin>
LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
 Interface "eth0"
</Plugin>

3.	 Restart the collectd service to pick up this change:

sudo service collectd restart

Collectd-web
At this point, data is being sent over to the collectd server (at address 172.16.0.253).
To view this data, we install another package that can interpret the RRD files and present
them in an easy-to-use web interface. We first download the collectd-web tarball from the
following URL:

http://collectdweb.appspot.com/download/

1.	 We then unpack the archive, as follows:
tar zxvf collectd-web_0.4.0.tar.gz

2.	 Then, we copy everything over to the web server DocumentRoot directory:

sudo cp -a ./collectd-web /var/www

3.	 Create or modify the /etc/collectd/collection.conf file with the following
contents:
datadir: "/var/lib/collectd/"

libdir: "/usr/lib/collectd/"

4.	 We then run the standalone server that will listen locally for requests from Apache:
cd /var/www/collectd-web

sudo nohup python runserver.py &

Monitoring

354

5.	 After this, we edit the vhost file that controls DocumentRoot of our Apache setup
(on Ubuntu, this is /etc/apache2/sites-enabled/000-default) to ensure
that .htaccess files are understood with the AllowOverride all configuration:
<Directory /var/www/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride all
 Order allow,deny
 allow from all
</Directory>

6.	 We can now simply reload Apache to pick up the changes, as follows:
sudo service apache2 reload

7.	 Now, we point our web browser to our installation, for example,
http://172.16.0.253/collectd-web, to view the collectd stats from the
listed servers.

How it works...
Munin has plugins for various monitoring activities, including libvirt. As libvirt is used
to manage the running instances on our Compute nodes, they hold an array of information
that we can send to Munin to allow us to get a better understanding of what is happening in
and on our OpenStack Compute hosts and instances.

Collectd is regarded as one of the standard ways of collecting resource information from
servers and instances. It can act as a server and a client, and as such, we use the same
installation binaries on both our monitoring host and guests. The difference is in the
configuration file, /etc/collectd/collectd.conf. For the server, we specify that we
listen on a specific port using the following lines in the server's configuration file:

<Plugin network>
 Listen "*" "12345"
</Plugin>

For the client configuration, we specify where we want the data sent to using the following
lines in the client's configuration file:

<Plugin network>
 Server "172.16.0.253" "12345"
</Plugin>

To bring the two together in a convenient interface to collectd, we install the collectd-web
interface that has a standalone service that is used in conjunction with Apache to provide us
with the interface.

Chapter 13

355

Monitoring the storage service using
StatsD/Graphite

When monitoring the OpenStack Storage service, Swift, we are looking at gathering key
metrics from within the storage cluster in order to make decisions on its health. For this, we
can use a small piece of middleware named swift-informant, together with StatsD and
Graphite, to produce near real-time stats of our cluster.

Getting ready
We will be configuring StatsD and Graphite on a server that has access to the OpenStack
Storage proxy server. Ensure this server has enough RAM (at least 1 GB), disk (at least 10
GB), and CPU (1 CPU for small test environments like the one used throughout this book)
capacity for the environment you are running.

How to do it...
To install StatsD and Graphite, carry out the following steps:

Prerequisites
For this, we will be configuring a new Ubuntu 12.04 server. Once Ubuntu has been installed,
we need to install some prerequisite packages.

apt-get -y install git python-pip gcc python2.7-dev apache2
 libapache2-mod-python python-cairo python-django
 libapache2-mod-wsgi python-django-tagging

Graphite
1.	 Installation of Graphite is achieved using the Python Package Index tool, pip:

sudo pip install carbon

sudo pip install whisper

sudo pip install graphite-web

2.	 Once installed, we can configure the installation. Example of configuration files for
Graphite are found at /opt/graphite/conf. We rename these to their respective
conf files:
cd /opt/graphite/conf

sudo mv carbon.conf.example carbon.conf

sudo mv storage-schemas.conf.example storage-schemas.conf

Monitoring

356

3.	 We now create the vhost file for Apache that will load the Graphite frontend. Create
/etc/apache2/sites-available/graphite with the following contents:
<VirtualHost *:80>
 ServerName 172.16.0.253
 DocumentRoot "/opt/graphite/webapp"
 ErrorLog /opt/graphite/storage/log/webapp/error.log
 CustomLog /opt/graphite/storage/log/webapp/access.log
 common

 # I've found that an equal number of processes & threads
 tends
 # to show the best performance for Graphite (ymmv).
 WSGIDaemonProcess graphite processes=5 threads=5 display-
 name='%{GROUP}' inactivity-timeout=120
 WSGIProcessGroup graphite
 WSGIApplicationGroup %{GLOBAL}
 WSGIImportScript /opt/graphite/conf/graphite.wsgi
 process-group=graphite application-group=%{GLOBAL}

 WSGIScriptAlias / /opt/graphite/conf/graphite.wsgi

 Alias /content/ /opt/graphite/webapp/content/
 <Location "/content/">
 SetHandler None
 </Location>

 Alias /media/ "/usr/lib/python2.7/dist-
 packages/django/contrib/admin/media/"
 <Location "/media/">
 SetHandler None
 </Location>

 # The graphite.wsgi file has to be accessible by apache.
 It won't
 # be visible to clients because of the DocumentRoot
 though.
 <Directory /opt/graphite/conf/>
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Chapter 13

357

4.	 We enable this website using the a2ensite utility:
sudo a2ensite graphite

5.	 We now need to enable the WSGI file for Graphite:
sudo mv graphite.wsgi.example graphite.wsgi

6.	 Various areas need to change their ownership to that of the process running the
Apache web server:
sudo chown -R www-data:www-data /opt/graphite/storage/log/

sudo touch /opt/graphite/storage/index

sudo chown www-data:www-data /opt/graphite/storage/index

7.	 We can now restart Apache to pick up these changes:
sudo service apache2 restart

8.	 The Graphite service runs with a SQLite database backend, so we need to initialize
this.
cd /opt/graphite/webapp/graphite

sudo python manage.py syncdb

9.	 This will ask for some information, as displayed next:
You just installed Django's auth system, which means you
 don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'root'):
E-mail address: user@somedomain.com
Password:
Password (again):
Superuser created successfully.
Installing custom SQL …
Installing indexes …
No fixtures found.

10.	 We also need to ensure that Apache can write to this too:
sudo chown -R www-data:www-data /opt/graphite/storage

11.	 Finally, we start the services, thus:

cd /opt/graphite

sudo bin/carbon-cache.py start

Monitoring

358

StatsD
1.	 StatsD runs using node.js, so we have to install it first, using packages from

Ubuntu's repositories:
sudo apt-get update

sudo apt-get -y install nodejs

2.	 We then check out the StatsD code from Git:
git clone https://github.com/etsy/statsd.git

3.	 Configuring StatsD is done by modifying an example configuration file:
cd statsd

cp exampleConfig.js Config.js

4.	 We need to modify the Config.js file to change the graphiteHost: parameter to
localhost, as we're running Graphite on the same host as StatsD:
{
 graphitePort: 2003
 , graphiteHost: "localhost"
 , port: 8125
}

5.	 To start the service, we issue the following command:

nohup node stats.js Config.js &

swift-informant
We are now ready to configure the OpenStack Swift proxy server to include the swift-
informant middleware in the pipeline. This is done with configuring the /etc/swift/
proxy-server.conf file.

1.	 We first download and install the middleware by running the following commands:
git clone https://github.com/pandemicsyn/swift-
 informant.git

cd swift-informant

sudo python setup.py install

2.	 Once installed, we modify the pipeline in /etc/swift/proxy-server.conf to
specify a filter named informant:
[pipeline:main]
pipeline = informant healthcheck cache swift3 s3token
 tokenauth keystone proxy-server

Chapter 13

359

3.	 We then add in the informant filter section, specifying the address of our StatsD
server, in the statsd_host section, as follows:
[filter:informant]
use = egg:informant#informant
statsd_host = 172.16.0.9
statsd_port = 8125
standard statsd sample rate 0.0 <= 1
statsd_sample_rate = 0.5
list of allowed methods, all others will generate a
 "BAD_METHOD" event
valid_http_methods = GET,HEAD,POST,PUT,DELETE,COPY
send multiple statsd events per packet as supported by
 statsdpy
combined_events = no
prepends name to metric collection output for easier
 recognition, e.g. company.swift.
metric_name_prepend =

4.	 Once done, we simply restart our OpenStack proxy service:
sudo swift-init proxy-server restart

5.	 Load up your web browser and point it to your Graphite web installation, to see the
graphs get populated in realtime.

How it works...
Gaining insight into what our OpenStack Storage cluster is doing can be achieved by including
a piece of middleware in the pipeline of our OpenStack Storage proxy server named swift-
informant, along with StatsD and Graphite. StatsD is a node.js service that listens for
statistics sent to it in UDP packets. Graphite takes this data and gives us a real-time graph
view of our running services.

Installation and configuration is done in stages. We first install and configure a server that
will be used for StatsD and Graphite. Graphite can be installed using Python's Package Index
(using the pip tool), and for this, we install three pieces of software: carbon (the collector),
whisper (fixed-size RRD service), and the Django Web Interface, graphite-web. Using the
pip tool installs these services to the /opt directory of our server.

Once the server for running Graphite and StatsD has been set up, we can configure the
OpenStack Storage proxy service, so that statistics are then sent to the Graphite and StatsD
server. With the appropriate configuration in place, the OpenStack Storage service will happily
send events, via UDP, to the StatsD service.

Monitoring

360

Configuration of the Graphite interface is done in an Apache vhost file that we place in
Ubuntu's Apache's sites-available directory. We then enable this for our installation.

Note that vhost needs to be configured appropriately for our environment—specifically the
path to the DJANGO_ROOT area—as part of our Python installation. For Ubuntu 12.04, this is /
usr/lib/python2.7/dist-packages/django.

Alias /media/ "/usr/lib/python2.7/dist-
 packages/django/contrib/admin/media/"

We then ensure that the Graphite WSGI (Web Service Gateway Interface) file is in place at
the appropriate path, as specified by the WSGIScriptAlias directive at /opt/graphite/
conf/graphite.wsgi.

Once in place, we ensure that our filesystem has the appropriate permissions to allow
Graphite to write various logs and information as it's running.

When this has been done, we simply restart Apache to pick up the changes.

With the Graphite web interface configured, we initialize the database; for this installation,
we will make use of a SQLite database resource. This is achieved by running the syncdb
option in the Graphite manage.py script in the /opt/graphite/webapp/graphite
directory. This asks us to create a superuser called user for the system, to manage it later.

Once this has been done, we can start the collector service, carbon, which starts the
appropriate services that will listen for data being sent to it.

With all that in place, we simply move our efforts to the OpenStack Storage proxy service,
where we checkout the swift-informant middleware to be inserted into the pipeline of
our proxy service.

See also
ff For more information about Graphite visit graphite.wikidot.com.

ff For more information about StatsD visit github.com/etsy/statsd.

Monitoring MySQL with Hyperic
Database monitoring can be quite complex, and depending on your deployment or experience,
monitoring may already be set up. For those that don't have an existing monitor for a MySQL
service, Hyperic from SpringSource is an excellent tool to set up monitoring and alerting for
MySQL. The software comes in two editions: an Open Source edition suitable for smaller
installations and an Enterprise edition with paid support. The steps in the following section
are for the Open Source edition.

Chapter 13

361

Hyperic can monitor many aspects of our OpenStack
environment including system load, network statistics,
Memcached, and RabbitMQ status. For more information
on Hyperic and the versions, visit www.hyperic.com.

Getting ready
We will be configuring Hyperic on an Ubuntu 12.04 server that has access to the MySQL
server in our OpenStack environment. Ensure this server has enough RAM (at least 2 GB),
disk (at least 10 GB), and CPU (at least 1 CPU; 2 CPU is better) capacity for the environment
you are running. Log in as a normal user to download and install the software.

How to do it...
To install Hyperic, carry out the following steps:

Hyperic server
1.	 We can find the Hyperic server to be downloaded at http://www.springsource.

com/landing/hyperic-open-source-download.

2.	 Fill in the details, and you will be presented with two links. One is for the server, and
the other for the agent. Download both.

3.	 On the server that will be running the Hyperic server, unpack the hyperic-hq-
installer archive, thus:
tar zxvf hyperic-hq-installer-4.5-x86-64-linux.tar.gz

Once unpacked, change to the directory:

cd hyperic-hq-installer-4.5

4.	 The default install area for Hyperic is /home/hyperic, so we create this and ensure
our unprivileged user can write to it:
sudo mkdir -p /home/hyperic

sudo chown openstack /home/hyperic

5.	 Once this area is ready, we can run the setup script to install Hyperic:
./setup.sh

Monitoring

362

6.	 During the installation, a message will pop up asking us to open up another
terminal on our server as the root user to execute a small script, as shown in the
following screenshot:

7.	 In a new terminal shell, log in as root and execute this command as described in the
previous step:
/home/openstack/hyperic-hq-installer-4.5/installer/data/hqdb/tune-
os.sh

8.	 Return to the original shell and continue the installation. Eventually, the installation
will complete. We can now start the Hyperic HQ service with the following command:

/home/hyperic/server-4.5/bin/hq-server.sh start

9.	 First-time start up can be quite slow, but eventually you will be able to point your
web browser at the address the installation has presented to you, which will be
http://server:7080/.

10.	 Log in with username hqadmin and password hqadmin.

Nodes
Each node that we want to monitor in Hyperic needs an agent installed, which then gets
configured to talk back to the Hyperic server.

1.	 Copy the agent tarball to the server that we'll be monitoring in Hyperic.

2.	 Unpack the agent as follows:
tar zxvf hyperic-hq-agent-4.5-x86-64.tar.gz

3.	 Change to the unpacked directory:
cd hyperic-hq-agent-4.5

4.	 Start the agent, which will ask for information about the Hyperic server installation.
Specify the server address, port, username (hqadmin), and password (hqadmin).
When asked for the IP to use, specify the address that Hyperic can use to
communicate with the server.
bin/hq-agent.sh start

Chapter 13

363

The output from running the previous command is as follows:

5.	 This completes the installation of the agent. Once done, the new node will appear in
Hyperic, with auto-discovered services listed.

6.	 Click on the Add to Inventory button to accept these to be added to Hyperic, and you
will see our new node listed with the services that have been discovered.

Monitoring MySQL
To monitor MySQL, carry out the following steps:

1.	 Monitoring MySQL involves the agent's understanding how to authenticate with
MySQL. We first add in the MySQL service to our host by selecting the host that has
recently been added. This takes us to the main screen for that host, where we can
click through services that are being monitored.

Monitoring

364

2.	 We then click on the Tools Menu option and select New Server.

3.	 This takes us to a screen where we can add in a label for the new service and the
service type.

Name: openstack1 MySQL

Server Type: MySQL 5.x

Install Path: /usr

Chapter 13

365

4.	 Clicking on OK takes us to the configuration screen for this new service. At the bottom
of the page, there is a section named Configuration Properties. Click on the EDIT…
button for this section.

5.	 We can now specify the username, password, and connect string, to use to connect
to the running MySQL instance.

JDBC User: root

JDBC Password: openstack

These are the credentials for a user in MySQL that can see all databases. Check the
Auto-Discover Tables option and leave the rest of the options MySQL at their default
values, unless you need to change the address that the agent will connect to for
MySQL.

Monitoring

366

6.	 By clicking on OK and then browsing back to the host, we will now have a monitoring
option named openstack1 MySQL, as specified in step 3. The agent will then collect
statistics about our MySQL instance.

How it works...
Hyperic uses agents to collect information and sends this back to the Hyperic server, where
we can view statistics about the environment and configure alerting based on thresholds. The
agent is very flexible and can be configured to monitor many more services than just MySQL.

Configuration for MySQL of the agent is done through the Hyperic server's interface, where a
running node's service is known as a server. Here, we can configure usernames, ports, and
passwords, to allow the agent to successfully communicate with that service. For MySQL, this
is providing the agent with the correct username, password, and address for the familiar jdbc
(Java Database Connector) connect string.

Chapter 13

367

There's more...
In your datacenter, you may have a MySQL cluster rather than a single server, where a view of
the cluster as a whole is of equal (if not more) importance to that of the individual nodes. An
example cluster monitoring suite that has both free and enterprise options is named CMON
and is available at SeveralNines (http://www.severalnines.com/resources/cmon-
cluster-monitor-mysql-cluster).

Index
Symbols
--network_size option 178
--num_networks option 178
--router

external=True flag 215

A
a2ensite utility 357
account server, OpenStack Storage

configuring 101, 102
ACLs 128, 129
admin_url parameter 29
api_paste_config 64
apt-get tool 54
apt-get utility 118
auto_assign_floating_ip 65
Auto-Discover Tables option 365

B
bug reports

account, creating on LaunchPad 331
bug reports, submitting through

LaunchPad 332
completing, commands 333
logs, pasting 333
submitting 331

C
Chef

used, for OpenStack installation 269
Chef Client

installing 255

Chef cookbooks
downloading 256, 257

Chef environment
setting up, for OpenStack 260-263

Chef-Server-ctl command 254
Cinder

URL 332
Cinder Client

used, for creating volumes 159-161
cinder node

configuring, for use with cinder-
volume 157, 158

cinder-volume
about 154
cinder node, configuring 157, 158
OpenStack Compute, configuring

for 154, 156
cinder-volume services

configuring 152, 154
Cloud instance

launching 79-81
terminating 82, 83

cluster
health, checking 135-137
managing, with swift-init 134, 135
nodes, removing 143, 144

CMON 367
Collectd

Collectd Client 352
Collectd server 351, 352
Collectd-web 353, 354
used, for instances monitoring 350-354
working 354

command-line tools
installing, on Ubuntu 69, 70

370

community
IRC Support 334
mailing list 335

Compute nodes
configuring, for Neutron 198-203

Compute services monitoring, Munin used
about 345
steps 345-349
working 349

configuration, Ubuntu Cloud Archive 10, 11
connection_type=libvirt 64
containers

about 119
creating 119, 120
deleting 127, 128
listing 123

container server, OpenStack Storage
configuring 102-104

cookbook 252
Corosync

about 289
installing 290
installing, on controller1 290, 291
services, starting 292, 293
used, for Keystone configuration 294-299
working 293, 294

create option 161
Create User button 281
curl 89

D
Dashboard

URL 332
database services

configuring 60, 61
DHCP

flat networking, configuring with 168-171
installing, from cookbooks 258, 260

dhcpbridge= 64
dhcpbridge_flagfile= 64
directories

uploading 121
dnsmasq service 53, 171
drives

preparing, for OpenStack Storage 132, 133

E

ec2_dmz_host=172.16.0.200 64
ec2_private_dns_show_ip 64
endpoint_URL option 100
error code, 40X 321
error code, 500 321

F
first OpenStack node

booting, into Razor 264
flags

URL 65
FlatDHCPManager networking 171
Flat networking

configuring, with DHCP 168-171
floating IPs

automatically assigning 182, 184
manually associating, to instances 180, 181
manually disassociating, from

instances 181, 182
force_dhcp_release 64, 65
force-reload command 135
fully qualified domain name (FQDN) 339

G
Galera

used, for MySQL clustering 274-283
Glance. See also OpenStack Image Service
Glance

configuring, with Corosync 294, 295
configuring, with Pacemaker 294, 295
running, across multiple nodes 295, 296
URL 332

glance_api_servers=172.16.0.200:9292 65
glance command-line tool 42
Graphite

used, for storage service monitoring 355-357
Grizzly 10

H
HA Proxy

configuring, MySQL Galera load balancing
283-289

hard drives
failed hard drives, detecting 145, 146
failed hard drives, replacing 145, 146

371

Horizon. See OpenStack Dashboard
Hyperic

about 360
used, for MySQL monitoring 360-365

I
images

deleting 44
details, viewing 44
listing 43
managing, with OpenStack Image Service 42
private images, making public 44-46
remotely stored image, registering 46, 47
shared images, viewing 49, 50
sharing, between tenants 48

image_service=nova.image.glance.
GlanceImageService 65

installation
command-line tools, on Ubuntu 69
OpenStack Compute controller

services 53, 54
OpenStack Identity

service 11-14
OpenStack Storage 89, 90
swift client tool 117-119

instance_id 163, 165
instances

connecting to, OpenStack Dashboard used
239-241

floating IPs, manually associating 180, 181
floating IPs, manually

disassociating 181, 182
launching, OpenStack Dashboard

used 235-238
terminating, OpenStack Dashboard

used 238, 239
volumes, attaching to 162, 163
volumes, detaching from 163-165

internal_url parameter 29
IRC Support 334
iscsi_helper=tgtadm 65

J
jdbc (Java Database Connector) 366

K
keypairs

about 76
adding 220, 221
creating 77
deleting 78, 221, 222
importing 222, 223
listing 78
managing, OpenStack Dashboard

used 219-221, 224
Keystone

about 5
configuring, with Corosync 294
configuring, with Pacemaker 294
URL 332

keystoneclient tool 17

L
LaunchPad

account, creating 331
bug reports, submitting through 332

libvirt plugin 350
libvirt_type=qemu 64
libvirt_use_virtio_for_bridges 64
logging

about 304
OpenStack Dashboard logs 305
OpenStack Identity logs 306
OpenStack Image Service logs 306
OpenStack Network Service logs 306
OpenStack Storage logs 305
step 304, 305

log levels
changing 307
OpenStack Compute services, log-level

settings 307
loopback filesystem

creating 153
LVM

setting up, for use with cinder-volume 153

M
mailing list

subscribing to 335
member-create option 49

372

memcached 89
Munin

master server 345, 346
nodes 347
OpenStack Compute services,

monitoring 347, 348
used, for Compute services monitoring 345
used, for instances monitoring 350
working 354

myKey keypair 78
MySQL

monitoring, with Hyperic 360-366
OpenStack Image Service, configuring 38

MySQL clustering
Galera, using 274-283
installation 278, 279
node, preparing 277
OpenStack database cluster,

configuring 280-282
working 283

MySQL Galera load balancing
HA Proxy, configuring 283, 284
HA Proxy, installing 284-287
OpenStack configuration, floating

IP address used 288, 289

N
Nagios

used, for OpenStack services monitoring 338
NAT (Network Address Translate) 7
network interfaces

bonding, for redundancy 300, 301
networks

about 186
creating 225-227
deleting 227, 228
managing, OpenStack Dashboard used 224
viewing 228, 229

Network Time Protocol (ntp)
about 53, 58, 89
checking 310, 311

Neutron
about 168
compute nodes, configuring 198-203
OVS, configuring for 187-193
OVS, installing for 187-193

sandbox Network server, creating with
Vagrant 184-186

sandbox Network server, creating with
VirtualBox 184-186

URL 332
Neutron API server

about 194
configuring 194-198

Neutron network. See also networks
Neutron network

about 7
creating 203-207
deleting 207-210
external Neutron network, creating 210-216

no-daemon command 135
Node installation

monitoring 269
nodes

about 252
removing, from cluster 143

Nova. See OpenStack Compute
nova-api

about 53
restarting 219

nova-api-metadata 58
nova-cert 53
Nova Client

used, for defining groups 76
used, for defining rules 76
used, for deleting keypairs 78
used, for deleting volumes 165
used, for listing keypairs 78

nova-common 53
nova-compute 58
nova-compute-qemu 58
nova-conductor 53
nova.conf 159
nova keypair-add command 78
nova keypair-list command 78
nova list 163
nova-manage command 178, 244
nova-network 58
nova-objectstore 53
nova-scheduler 53
nova secgroup-add-rule command 76
nova secgroup-create command 76
nova secgroup-delete-rule command 76

373

Nova services
starting 67
stopping 68, 69

nova-volume 151
nova volume-detach 164
nova volume-list 163
no-wait command 135
NRPE (Nagios Remote Plugin Execution)

plugin 338

O
objects

deleting 127
downloading 125, 126
downloading, from OpenStack Object Storage

account 126
in container, listing 124
large objects, uploading 122, 123
listing 123
multiple objects, uploading 121
uploading 120, 121

object server, OpenStack Storage
configuring 104, 106

OCF (Open Cluster Format) 296
once command 135
OpenStack

about 303
Chef environment, setting up 260-263
installing, Chef used 269

OpenStack Authentication
misconfigured endpoints 327
troubleshooting 327

OpenStack Authentication, troubleshooting
authentication issues 328, 329
misconfigured endpoints 327

OpenStack Block Storage (Cinder)
checking 314, 315

OpenStack community
logs, pasting 335

OpenStack Compute
about 52
alternative release, using 59
configuring 61-65
configuring, for cinder-volume 154, 156
configuring, with OpenStack Identity Service

66, 67

controller services, installing 53, 54
nodes, configuring for cinder 156
packages, installing 58, 59
services, checking 70-73
services, starting 69
using 73, 74

OpenStack Compute Services
troubleshooting 316-321

OpenStack Compute Services Logs 304, 305
OpenStack Compute Services,

troubleshooting
error codes, 40X 321
error codes, 500 321
Instance Console log, viewing methods 318
instances, listing 321
launching instances 317
meta information download, instance

fails 319
OpenStack Dashboard

about 217
installing 218, 219
troubleshooting 323
used, for managing keypairs 219-224
used, for managing security group 230, 231
used, for managing users 245
using, to add tenants 241-244
using, to connect instances 239-241
using, to launch instances 235-238
using, to manage Neutron networks 224
using, to terminate instances 238, 239

OpenStack Dashboard (Horizon)
checking 311, 312

OpenStack Dashboard logs 305
OpenStack Dashboard, troubleshooting

login, issues 324-326
steps 323

OpenStack environment
expanding 270
roles, configuring 18
tenants, creating 16

OpenStack Identity (Keystone)
checking 312, 313

OpenStack Identity Service
about 5
installing 11-14
OpenStack Compute, configuring with 66, 67

374

OpenStack Image Service, configuring
with 40, 41

OpenStack Storage, configuring with 110-114
users, adding 19-22

OpenStack Image Service
about 35
alternative release, using 37
configuring, with MySQL 38, 39
configuring, with OpenStack

Identity Service 40, 41
image details, viewing 44
images, deleting 44
images, listing 43
images, managing with 42
installing 36, 37
private images public, making 44, 45
Ubuntu images, uploading 42

OpenStack Image Service (Glance)
checking 309

OpenStack Image Service logs 306
OpenStack installation, privileges

cinder 280
glance 280
keystone 280
nova 280
quantum 280

OpenStack Networking
troubleshooting 329, 330

OpenStack Networking (Neutron)
checking 313, 314

OpenStack Network Service logs 306
OpenStack Object Storage ACLs

using 128, 129
OpenStack Object Storage Service

troubleshooting 322, 323
OpenStack Object Storage Service, trouble-

shooting
authentication issues 322
drive failure, handling 323
server failure, handling 323
steps 322

OpenStack Object Storage (Swift)
checking 315, 316

OpenStack PPAs
URl 59
URL 37

OpenStack Services
changing 308
checking 308
monitoring, with Nagios 338
ntp, checking 310
OpenStack Block Storage (Cinder),

checking 314, 315
OpenStack Dashboard (Horizon),

checking 311, 312
OpenStack Identity (Keystone),

checking 312, 313
OpenStack Image Service (Glance) 309
OpenStack Networking (Neutron),

checking 313, 314
OpenStack Object Storage (Swift),

checking 315, 316
other services, checking 310, 311
rabbitmq, checking 310

OpenStack services monitoring, Nagios used
about 338
computer’s /etc/nagios/nrpe.cfg file 341
Controller’s /etc/nagios/nrpe.cfg file 341
for Swift 342
Nagios server, setting up 338-340
NRPE, configuring on Nodes 341
OpenStack Nodes, monitoring 342, 343
OpenStack Services 342
working 344

OpenStack Storage
account server, configuring 101
benchmarking 137, 138
cluster, managing with swift-init 134, 135
configuring 91-94
configuring, with OpenStack Identity

Service 110-114
container daemons, controlling 134
container server, configuring 102, 104
drives, preparing for 132, 133
installing 89, 90
object daemons, controlling 134
object server, configuring 104-106
proxy server, configuring 98-100
replication, configuring 94, 97
rings, making 106-109
sandbox environment, creating 86-89
service, configuring 97
SSL access, setting up 114, 115

375

starting 109
stopping 109
testing 116
testing, swift command used 116
usage statistics, collecting 146-149

OpenStack Storage cluster. See cluster
OpenStack Storage logs 305, 306
Opscode Chef Server

installing 252-254
OVS

configuring, for Neutron 187-193
installing, for Neutron 187-193

P
Pacemaker

about 289
configuring 299
configuring, for using with Glance 296- 299
configuring, for using with Keystone 296-299
installing, on controller1 290, 291
installing, on controller2 291
services, starting 292, 293
used, for Keystone configuration 294-299

Personal Package Archives (PPA) 11, 37, 59
Privileges button 281
proxy server, OpenStack Storage

configuring 98, 100
public_interface=eth1 65
public_url parameter 29
PuppetLabs Razor

installing, from cookbooks 258-260

Q
qemu 263

R
rabbit_host=172.16.0.200 64
rabbitmq

checking 310
Razor

first OpenStack node, booting into 264
razor active_model logview command 269
Razor broker

adding 266
creating 265

working 268
Razor model

adding 265
creating 265

Razor policy
adding 268

recipes 252
reload command 135
remotely stored image

registering 46, 47
replication, OpenStack Storage

configuring 94-97
restart command 135
rings, OpenStack Storage

device, assigning to 109
making 106-109
reblancing 109

roles
about 17, 252
configuring, for OpenStack environment 18

root_helper=sudo nova-rootwrap 64
RRD (Round Robin Database) 349
rules

adding 231
removing 231

S
sandbox Compute server

creating, with Vagrant 55-57
creating, with VirtualBox 55-57

sandbox environment
creating, Vagrant used 6-9
creating, VirtualBox used 6-9

sandbox environment, OpenStack Storage
creating 86-89

sandbox Network server
creating for Neutron, for Vagrant 184-186
creating for Neutron, for VirtualBox 184-186

security group
about 74
creating 75, 230, 231
deleting 76, 233
editing, to add rules 231-233
editing, to remove rules 231-233
managing, OpenStack Dashboard used 230
rule, removing from 75

376

service endpoints
defining 23-29

service tenant
creating 29-33

service users
creating 29-33

shutdown command 135
single points of failure (SPOF) 251, 273
Software Defined Networking (SDN) 168
Something went wrong screen 324
SSL access

setting up 114, 115
start command 135
StatsD

used, for storage service monitoring 355-358
status command 135
STONITH (Shoot The Other Node

In The Head) 292
stop command 135
storage service

monitoring, Graphite used 355, 357
monitoring, StatsD used 355-358
working 359, 360

Swift
about 86, 89
URL 332

swift-account 89
swift client tool

installing 117-119
swift cluster

capacity, managing 138-143
swift command

using, to test OpenStack Storage 116
swift-container 89
swift_has_path_suffix parameter 98
swift-informant 358
swift-init tool 134
swift-object 89
swift-proxy 89
swift-recon tool 149

T
tenants

about 15
adding, OpenStack Dashboard used 241-244
creating, in OpenStack environment 16

fixed networks, assigning
automatically 177, 178

fixed networks, modifying 178-180
images, sharing between 48, 49
particular network, assigning 178, 179
per tenant IP ranges for VLAN Manager, con-

figuring 175, 176
users, adding to 248, 249
users, removing from 249, 250

Tools Menu option 364

U
Ubuntu

command-line tools, installing 69, 70
Ubuntu 12.04 LTS 10
Ubuntu Cloud Archive

configuring 10, 11
URL, for info 11

Ubuntu images
uploading 42

usage statistics
collecting 146-148

users
adding 245, 246
adding, to OpenStack Identity

service 19-22
adding, to tenants 248, 249
deleting 246
details, updating 247
managing, OpenStack Dashboard used 245
passwords, updating 247
removing, from tenants 249, 250

V
Vagrant

URL 6, 86
used, for setting up sandbox

environment 6-9
Vagrantfile

editing 152
verbose 64
VirtualBox

URL 6, 86
used, for setting up sandbox

environment 6-9

377

VirtualBox Virtual Machine
adding, to Vagrant File 152

Virtual Network Console. See VNC
VLAN Manager

per tenant IP ranges, configuring 175, 176
VLAN Manager networking

about 168
configuring 172-175

VM
configuring, for cinder-volume use 153

VNC
used, for connecting to instances 239-241

volume_id 165
volumes

attaching, to instances 162, 163
creating 159
creating, Cinder Client used 159-161
deleting 165
deleting, Nova Client used 165
detaching, from instances 163, 164

VRRP (Virtual Redundant Router
Protocol) 286

W
WSGI (Web Service Gateway

Interface) 217, 360

X
xfsprogs 89

Z
zone 138

Thank you for buying

OpenStack Cloud Computing Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-849517-32-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, and Horizon

1.	 Learn how to install and configure all the core
components of OpenStack to run an environment
that can be managed and operated just like AWS
or Rackspace

2.	 Master the complete private cloud stack from
scaling out compute resources to managing
swift services for highly redundant, highly
available storage

3.	 Practical, real world examples of each service
are built upon in each chapter allowing you to
progress with the confidence that they will work in
your own environments

OpenNebula 3 Cloud
Computing
ISBN: 978-1-849517-46-1 Paperback: 314 pages

Set up, manage and maintain your Cloud and learn
solutions for datacenter virtualization with this
step-by-step practical guide

1.	 Take advantage of open source distributed file-
systems for storage scalability and high-availability

2.	 Build-up, manage and maintain your Cloud
without previous knowledge of virtualization and
cloud computing

3.	 Install and configure every supported hypervisor:
KVM, Xen, VMware

Please check www.PacktPub.com for information on our titles

Oracle Enterprise Manager
Cloud Control 12c: Managing
Data Center Chaos
ISBN: 978-1-849684-78-1 Paperback: 394 pages

Get to grips with the latest innovative techniques for
managing data center chaos including performance
tuning, security compliance, patching and more

1.	 Learn about the tremendous capabilities of the
latest powerhouse version of Oracle Enterprise
Manager 12c Cloud Control

2.	 Take a deep dive into crucial topics including
Provisioning and Patch Automation, Performance
Management and Exadata Database Machine
Management

3.	 Take advantage of the author’s experience as an
Oracle Certified Master in this real world guide
including enterprise examples and case studies

IBM Websphere Portal 8: Web
Experience Factory and the
Cloud
ISBN: 978-1-849684-04-0 Paperback: 474 pages

Build a comprehensive web portal for your company with
a complete coverage ao all project lifecycle stages

1.	 The only book that explains the various phases in
a complete portal project life cycle

2.	 Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real time examples

3.	 Take a deep dive into Portal architectural analysis,
design and deployment

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Keystone OpenStack Identity Service
	Introduction
	Creating a sandbox environment using VirtualBox and Vagrant
	Configuring Ubuntu Cloud Archive
	Installing OpenStack Identity service
	Creating tenants
	Configuring roles
	Adding users
	Defining service endpoints
	Creating the service tenant and
service users

	Chapter 2: Starting OpenStack
Image Service
	Introduction
	Installing OpenStack Image Service
	Configuring OpenStack Image Service
with MySQL
	Configuring OpenStack Image Service with OpenStack Identity Service
	Managing images with OpenStack
Image Service
	Registering a remotely stored image
	Sharing images between tenants
	Viewing shared images

	Chapter 3: Starting OpenStack Compute
	Introduction
	Installing OpenStack Compute Controller services
	Creating a sandbox Compute server with VirtualBox and Vagrant
	Installing OpenStack Compute packages
	Configuring database services
	Configuring OpenStack Compute
	Configuring OpenStack Compute with OpenStack Identity Service
	Stopping and starting Nova services
	Installation of command-line tools
on Ubuntu
	Checking OpenStack Compute services
	Using OpenStack Compute
	Managing security groups
	Creating and managing keypairs
	Launching our first Cloud instance
	Terminating your instance

	Chapter 4: Installing OpenStack Object Storage
	Introduction
	Creating an OpenStack Object Storage sandbox environment
	Installing OpenStack Object Storage
	Configuring storage
	Configuring replication
	Configuring OpenStack Object
Storage Service
	Configuring OpenStack Object Storage
proxy server
	Configuring Account Server
	Configuring Container Server
	Configuring Object Server
	Making rings
	Stopping and starting OpenStack
Object Storage
	Configuring OpenStack Object Storage with OpenStack Identity Service
	Setting up SSL access
	Testing OpenStack Object Storage

	Chapter 5: Using OpenStack
Object Storage
	Introduction
	Installing the swift client tool
	Creating containers
	Uploading objects
	Uploading large objects
	Listing containers and objects
	Downloading objects
	Deleting containers and objects
	Using OpenStack Object Storage ACLs

	Chapter 6: Administering OpenStack Object Storage
	Introduction
	Preparing drives for OpenStack
Object Storage
	Managing OpenStack Object Storage cluster
with swift-init
	Checking cluster health
	OpenStack Object Storage benchmarking
	Managing swift cluster capacity
	Removing nodes from a cluster
	Detecting and replacing failed hard drives
	Collecting usage statistics

	Chapter 7: Starting OpenStack
Block Storage
	Introduction
	Configuring Cinder volume services
	Configuring OpenStack Compute for
Cinder-volume
	Creating volumes
	Attaching volumes to an instance
	Detaching volumes from an instance
	Deleting volumes

	Chapter 8: OpenStack Networking
	Introduction
	Configuring Flat networking with DHCP
	Configuring VLAN Manager networking
	Configuring per tenant IP ranges for
VLAN Manager
	Automatically assigning fixed
networks to tenants
	Modifying a tenant's fixed network
	Manually associating floating IPs
to instances
	Manually disassociating floating IPs
from instances
	Automatically assigning floating IPs
	Creating a sandbox Network server for Neutron with VirtualBox and Vagrant
	Installing and configuring OVS for Neutron
	Installing and configuring Neutron API server
	Configuring Compute nodes for Neutron
	Creating a Neutron network
	Deleting a Neutron network
	Creating an external Neutron network

	Chapter 9: Using the OpenStack Dashboard
	Introduction
	Installing OpenStack Dashboard
	Using OpenStack Dashboard for
key management
	Using OpenStack Dashboard to manage Neutron networks
	Using OpenStack Dashboard for security group management
	Using OpenStack Dashboard to
launch instances
	Using OpenStack Dashboard to
terminate instances
	Using OpenStack Dashboard for connecting to instances using VNC
	Using OpenStack Dashboard to
add new tenants
	Using OpenStack Dashboard for
user management

	Chapter 10: Automating OpenStack Installations
	Introduction
	Installing Opscode Chef Server
	Installing the Chef Client
	Downloading cookbooks to support DHCP, Razor, and OpenStack
	Installing PuppetLabs Razor and DHCP
from cookbooks
	Setting up an Chef environment for OpenStack
	Booting the first OpenStack node into Razor
	Defining a Razor broker, model, and policy
	Monitoring the node installation
	Using Chef to install OpenStack
	Expanding our OpenStack environment

	Chapter 11: Highly Available OpenStack
	Introduction
	Using Galera for MySQL clustering
	Configuring HA Proxy for MySQL Galera
load balancing
	Installing and setting up Pacemaker
and Corosync
	Configuring Keystone and Glance with Pacemaker and Corosync
	Bonding network interfaces for redundancy

	Chapter 12: Troubleshooting
	Introduction
	Understanding logging
	Checking OpenStack services
	Troubleshooting OpenStack
Compute services
	Troubleshooting OpenStack Object
Storage service
	Troubleshooting OpenStack Dashboard
	Troubleshooting OpenStack Authentication
	Troubleshooting OpenStack Networking
	Submitting Bug Reports
	Getting help from the community

	Chapter 13: Monitoring
	Introduction
	Monitoring OpenStack services with Nagios
	Monitoring Compute services with Munin
	Monitoring instances using Munin
and Collectd
	Monitoring the storage service using
StatsD/Graphite
	Monitoring MySQL with Hyperic

	Index

